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Abstract

Consider a triangular interpolation scheme on a continuous piecewise C1 curve of the

complex plane, and let G be the closure of this triangular scheme. Given a meromorphic

function f with no singularities on G; we are interested in the region of convergence of the

sequence of interpolating polynomials to the function f : In particular, we focus on the case in

which G is not fully contained in the interior of the region of convergence defined by the

standard logarithmic potential. Let us call Gout the subset of G outside of the convergence

region.

In the paper we show that the sequence of interpolating polynomials, fPngn; is divergent on

all the points of Gout; except on a set of zero Lebesgue measure. Moreover, the structure of the

set of divergence is also discussed: the subset of values z for which there exists a partial

sequence of fPnðzÞgn that converges to f ðzÞ has zero Hausdorff dimension (so it also has zero

Lebesgue measure), while the subset of values for which all the partials are divergent has full

Lebesgue measure.

The classical Runge example is also considered. In this case we show that, for all z in the

part of the interval ð�5; 5Þ outside the region of convergence, the sequence fPnðzÞgn is

divergent.
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1. Introduction

The main purpose of this paper is to study the convergence, in the complex plane,
of a sequence of interpolating polynomials to a given meromorphic function f : More
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specifically, let b : ½0; 1�-C be a simple and continuous piecewise C1 curve whose
derivative is always different from zero, and assume that f has no poles on bð½0; 1�Þ:
Let us denote by ftn;jg0pjpn;nX0 a triangular interpolation scheme on the interval

½0; 1� (see Section 2). This scheme induces a triangular scheme fxn;jg0pjpn;nX0 on

bð½0; 1�ÞCC; by defining xn;j ¼ bðtn;jÞ: We will denote by fPngnX0 the corresponding

sequence of interpolating polynomials; in other words, Pn is the (only) polynomial of
degree less than or equal to n that satisfies Pnðxn;jÞ ¼ f ðxn;jÞ for all j between 0 and n:

As usual, if xn;j1 ¼ xn;j2 ¼ ? ¼ xn;jr for r (different) values jk; we assume that Pn also

interpolates the first r � 1 derivatives of f on the point xn;j1 : Then, given a zAC; a

natural question is to determine if fPnðzÞgnX0 converges to the value f ðzÞ: Classical

references for this problem are [2,13,14].
In this work we will not assume any concrete triangular scheme for the

interpolating points; we will only ask them to admit a distribution.

Definition 1.1. An interpolation scheme fxn;jg0pjpn;nX0 is said to have a distribution

if the limit

lim
n-N

#fj: tn;jA½0; t�; 0p j p ng
n þ 1

exists for all tA½0; 1�; where # is used to denote the cardinal of a set. If we denote by
jðtÞ the value of this limit, then jðtÞ is known as the distribution associated to the
interpolation scheme fxn;jg0pjpn;nX0:

A well-known interpolation scheme is obtained using equidistant nodes on a given
interval, giving rise to a linear distribution j: Another classical example is based on
using a finite number of different values of xn;j; or, in other words, applying a Taylor

interpolation method on a finite number of points. In this case, j is a piecewise
constant function, and the discontinuities correspond to the position of the
interpolating nodes.

Remark 1.1. Given a distribution j it can be proved that there exists a unique
probability measure m defined on the Borel sets of ½0; 1� such that for

0papbp1; mðða; b�Þ ¼ jnðbÞ � jnðaÞ; where jn is the unique function which is
monotone increasing, continuous on the right, and agrees with j wherever j is

continuous on the right (see, for instance, [9, p. 302]). In particular, jnð1Þ ¼ jð1Þ ¼
1 and mð½0; 1�Þ ¼ 1; and, therefore, mðf0gÞ ¼ jnð0Þ:

To study the domain of convergence of interpolation schemes with distribution j;
we denote by m the corresponding Borel measure and we introduce the logarithmic

potential V : CWbð½0; 1�Þ-R; defined by

VðzÞ ¼
Z 1

0

ln jz � bðtÞj dm: ð1Þ
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Sometimes we will also refer to V as the level function of the triangular scheme. V

can be extended to the values zAbð½0; 1�Þ by defining VðzÞ ¼ �N when the integral
(1) is not convergent.

Let us define GCbð½0; 1�Þ as the closure of the triangular scheme fxn;jg0pjpn;nX0:

Moreover, for simplicity, we will assume that f has a finite number of poles
a1;y; am; that all of them are simple, and none of them belongs to G: We denote by
a0 a pole such that

Vða0Þ ¼ min
1pkpm

VðakÞ:

Note that, as none of the ak belongs to G; jVða0ÞjoN: Then, if we define

C ¼ fzAC such that VðzÞoVða0Þg;

D ¼ fzAC such that VðzÞ4Vða0Þg

it is known that the sequence fPnðzÞgnX0 converges to f ðzÞ if zAC; and that it

converges to N if zADWG (see, for instance, [12,15]). Note that these classical
techniques do not work neither for z such that VðzÞ ¼ Vða0Þ; nor for zAG-D: This
last case will be the main topic of this paper.

The situation considered here is then the following: assume that fxn;jg0pjpn;nX0 is

a triangular scheme on bð½0; 1�Þ; having a distribution j with a Borel measure m:
Moreover, let us write the closure of the triangular scheme G as Gin,Gout,Gc;
where Gin ¼ G-C (Gin is the part of G inside the convergence region C), Gout ¼
G-D (Gout is outside C) and Gc contains the remaining points on G (Gc is the part of
G inside the level set VðzÞ ¼ Vða0Þ). We are concerned with the behaviour of the

interpolating polynomial on Gout: Hence, we will focus on the case Gouta|: Then,
although the interpolation scheme is dense on Gout; we do not expect convergence on
the full region due to the well-known Runge phenomenon [10].

In this paper we will show that the subset of zAGout for which the sequence
fPnðzÞgnX0 converges to N is of full Lebesgue measure1 in Gout: Moreover, the set

zAGout for which there exists a subsequence of fPnðzÞgnX0 convergent to f ðzÞ is not

only non-empty but also dense in the relative interior of Gout in bð½0; 1�Þ; and with
zero Hausdorff dimension (so it also has zero Lebesgue measure). In particular, if we
define Gc

out as the set of points zAGout for which the sequence fPnðzÞgnX0 converges

to f ðzÞ; then this set has to have zero Hausdorff dimension (these are the statements
of Theorem 3.1). However, the only knowledge of the distribution j is not enough to

give more information on Gc
out: for instance, the equidistant triangular scheme j

n

(0ojon) on ½0; 1� has Gc
out ¼ | (see Theorem 3.2), while a suitable modification of

this triangular scheme, that still admits the same (uniform) distribution, produces a
Gc

out that is dense in Gout (see Section 3.2). We note that Theorem 3.2 can be

immediately applied to the well-known Runge example to prove the divergence in all

1We define the Lebesgue measure of a set ACbð½0; 1�Þ as the usual Lebesgue measure of the set

b�1ðAÞC½0; 1�:
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the points of Gout except, of course, the endpoints of the interpolation interval since
they are always interpolating nodes (see Section 3.1).

To present these results, the paper has been organised as follows: Section 2
contains the notations, main definitions and basic properties about triangular
schemes and interpolation. Section 3 is devoted to the formal presentation of the
results, including the application to the Runge example. Finally, Section 4 is devoted
to the proofs of the main results and Appendix A contains some properties of the
level sets of the logarithmic potential.

A natural extension of these results is to consider interpolating schemes whose
closure is not contained in a curve of C: This is work in progress.

2. Basic definitions and properties

This section introduces the main definitions used in the paper. They refer to the
distribution of the nodes (Sections 2.1 and 2.2) and to the sets where the convergence
is studied (Section 2.3).

2.1. Schemes and distributions

Let fxn;jg0pjpn;nX0 be a triangular scheme, having a distribution j with the

associated Borel measure m: In this paper, we will restrict ourselves to cases in which
j is continuous on Gout ¼ G-D: Apparently, we are ruling out a typical situation for
the distribution of an interpolation scheme: discontinuities. They usually correspond
to interpolate an increasing number of derivatives of the interpolated function f at a
given point, or to a very high accumulation of interpolating points in a small region.
Note that the measure m of a discontinuity point is positive so it can be represented
by a suitable Dirac delta. Then, the logarithmic potential (1) goes to �N when z

goes to the discontinuity point of the distribution (see Proposition 2.1); this implies
that a sufficiently small neighbourhood of this point (and, hence, the discontinuity) is
included in the convergence region. Therefore, the assumption of the continuity of j
outside the convergence region seems quite natural (see Proposition 2.2).

In what follows, we will use interpolation schemes that are not triangular. The main
reason is that, in some proofs, we will use schemes obtained by selecting an infinite subset
of nodes of a given scheme. Hence, some lemmas and propositions are stated using non-
triangular schemes. We note that the technicalities of the proofs are almost identical in
the general and the triangular cases. For these reasons, we give the following definition.

Definition 2.1. Let fkðnÞgnX0 be a sequence of natural numbers. A sequence of

complex numbers fxn;jg0pjpkðnÞ;nX0 such that xn;j ¼ bðtn;jÞ is said to be an

interpolation scheme on b if

1. lim
n-N

kðnÞ ¼ N;

2. if 0p j p cp kðnÞ then tn;j p tn;c:
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If kðnÞ ¼ n for all n X 0 the scheme is said to be triangular.

Next proposition is about the logarithmic potential V defined in (1). It is well
known (see, for instance, [8]) that V is a subharmonic function on C and harmonic
on CWbðsupp mÞ; where supp m denotes the support of the measure m on ½0; 1�:

Proposition 2.1. Let V be a logarithmic potential. Then:

1. If xACWbðsupp mÞ; then V is continuous at x:
2. If xAbð½0; 1�Þ and VðxÞ ¼ �N then V is continuous at x:
3. The set CM ¼ fxAC such that VðxÞoMg is open and bounded for all MAR:

Proof. The first statement holds because V is harmonic on CWbðsupp mÞ: The
second statement follows from the fact that V is subharmonic and, hence,
upper semi-continuous. The last statement also follows from upper semi-continuity
and the fact that VðxÞ goes to infinity when x does. &

Proposition 2.2. Let fxn;jg0pjpn;nX0 be a triangular scheme with closure GCbð½0; 1�Þ
and distribution j: If MAR; let us define the sets CM ¼ fxAC such that VðxÞoMg
and TM ¼ ftA½0; 1� such that bðtÞeCMg: Then the distribution j is continuous on TM :

Proof. Let ts a point of discontinuity of j: If V is the logarithmic potential
associated to the triangular scheme, then VðbðtsÞÞ ¼ �N: As, by Proposition 2.1,
V3b is continuous at ts; there exists an open neighbourhood Us of bðtsÞ such that
%UsCCM and Us-bð½0; 1�Þ is an open interval. Therefore, j has no discontinuities on

TM : &

2.2. Regular nodes

Let fxn;jgnX0;0pjpkðnÞ be an interpolation scheme, with closure G; on a

parametrised curve b: Suppose that this scheme has a distribution j: Let us define
an;jAR as

an;j ¼ kðnÞmð½tn;j; tn;jþ1�Þ � 1; j ¼ 0;y; kðnÞ � 1; ð2Þ
where m is the Borel measure associated to j: We note that the numbers an;j are zero

iff the triangular scheme is equispaced with respect to the measure m:

Definition 2.2. If xAG; the scheme fxn;jgnX0;0pjpkðnÞ is said to have regular nodes at

the point x ¼ bðtÞ with respect to j (or m) if

(a) j is continuous in a neighbourhood of t;
(b) there exists d40 such that, for all n; there exists bnX0 satisfying:

(b.1) for any p and q ðpoqÞ in Snðt; dÞ ¼ fj such that tn;jA½t � d; t þ d�g;
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we have

Xq�1

j¼p

an;j

kðnÞ lnðkðnÞÞ
�����

�����pbn;

(b.2) limn-N bn ¼ 0:

The scheme fxn;jgnX0;0pjpkðnÞ is said to have regular nodes on a set G0CG iff it has

regular nodes at each xAG0:

Given a continuous distribution j; it is always possible to select a scheme
fx̂n;jgnX0;0pjpkðnÞ such that an;j ¼ 0; for all n and j: Of course, the distribution of such

a scheme will be again j: In some sense, fx̂n;jgnX0;0pjpkðnÞ is a ‘‘canonical scheme’’

for j: Hence, this is a local condition on the proximity of the original scheme to a
‘‘canonical scheme’’ in a neighbourhood of a given point t: On the other hand, it is
very easy to construct interpolation schemes with some of the an;j different from

zero: it is enough to move ‘‘a few’’ points with respect to the ‘‘canonical scheme’’.
The counterexample in Section 3.2 is a good example of this.

The condition given in Definition 2.2 is used in the proofs but only for technical
reasons. We do not know whether it can be removed from the statements of the
theorems.

2.3. Proper interpolation sets

Let f : UCC-C be a meromorphic function in a simply connected region U with

m simple poles fakgm
k¼1: Given an interpolation scheme fxn;jg0pjpkðnÞ;nX0 contained

in U ; we denote by Pn the (unique) interpolating polynomial of f on the nodes
xn;0;y; xn;kðnÞ (note that Pn is a polynomial of degree at most kðnÞ). To fix ideas, we

give now the well-known Hermite formula for the interpolating error (see [2,14]): let
gn be a Jordan curve such that its interior (i.e., the bounded connected component of
CWgn) contains the nodes xn;0;y; xn;kðnÞ; and f is analytic on an open

neighbourhood of gn and its interior. Then, for all x in the interior of gn; we have

RnðxÞ � f ðxÞ � PnðxÞ ¼
1

2pi

Z
gn

wnðxÞf ðzÞ
wn ðzÞðz � xÞ dz;

where wnðxÞ ¼
QkðnÞ

j¼0 ðx � xn;jÞ:
To derive information about the limit behaviour of the sequence of interpolating

polynomials, we need to work on a sufficiently big region. A sufficient (but quite
technical) condition for such a region is given in the next definition. This condition
will be used later (in Proposition 4.1) to derive an error formula for the interpolating
polynomials.
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Definition 2.3. A set KCU is said to be a proper interpolation set with respect to f ;
U and fxn;jg0pjpkðnÞ;nX0 if

1. K is a compact set with non-empty interior.
2. The scheme fxn;jg0pjpkðnÞ;nX0 is contained in K :

3. There exists a closed, simple, regular and piecewise C1 curve s : ½0; 1�-C such
that: sð½0; 1�ÞCU ; none of the poles of f belongs to sð½0; 1�Þ;K is contained in the
interior of s; and for all xAK ;

lim
n-N

wnðxÞ
wnðzÞ

¼ 0;

uniformly for zAsð½0; 1�Þ:
4. For any pole aj of f belonging to the exterior of s and any xAK ;

lim
n-N

wnðxÞ
wn ðajÞ

¼ 0:

Remark 2.1. The reason to define proper interpolation sets is to work on compact
sets on which properties 3 and 4 of the previous definition hold. In fact, these
conditions are very general and, in Proposition 4.3 (see also Remark 4.2), we will
show how to construct such sets using the level sets of the logarithmic potential.

Remark 2.2. Besides, there are alternative ways of finding such sets. For instance, if
there exists a closed curve s such that D ¼ distðsð½0; 1�Þ;KÞ4d ¼ diamðKÞ; where

diamðKÞ ¼ supy;zAK jy � zj; then jwnðxÞ=wnðzÞjpðd=DÞnþ1; for all ðx; zÞAK 

sð½0; 1�Þ and therefore, K is a proper interpolation set. This condition has already
been used in [12].

3. Main results

Let fxn;jg0pjpn;nX0 be a triangular interpolation scheme on a continuous piecewise

C1 curve b; with closure GDbð½0; 1�Þ and distribution j; and let f : UCC-C be a
meromorphic function, defined on a simply connected region U ; with simple poles

fakgm
k¼1 which do not belong to G: We denote by fPngnX0 the sequence of

interpolating polynomials of f on the nodes fxn;jg0pjpn;nX0: As before, let a0 be a

pole such that Vða0Þ ¼ min
1pkpm

VðakÞ; C ¼ fzAC such that VðzÞoVða0Þg and D ¼
fzAC such that VðzÞ4Vða0Þg: We also define the sets Gin ¼ G-C and Gout ¼
G-D: Let us split Gout ¼ Gc

out,Gd
out; where Gc

out (resp. G
d
out) denotes the set of points

xAGout on which fPnðxÞgnX0 converges to f ðxÞ (resp. diverges). Finally, Gd;N
out is

defined as the set of xAGd
out on which fPnðxÞgnX0 converges to infinity, and Gsub

out is
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the set of xAGout on which fPnðxÞgnX0 has a subsequence convergent to f ðxÞ (note

that Gc
outCGsub

out).

Then, under this notation and conditions, we have the following results.

Theorem 3.1. If KCU is a proper interpolation set, then:

1. If xAK-C then fPnðxÞgnX0 converges to f ðxÞ; if xA (K -C then fPnðxÞgnX0

converges locally uniformly to f ðxÞ:
2. If xAK; but xeC,G,fa1;y; amg; then fPnðxÞgnX0 converges to N:

3. If the relative interior of Gout in bð½0; 1�Þ is non-empty, then the set Gsub
out is

uncountable and dense in the relative interior of Gout:
4. Assume that the triangular scheme has regular nodes on the set Gout: Then we have

that lðb�1ðGd;N
out ÞÞ ¼ lðb�1ðGoutÞÞ; where l denotes the Lebesgue measure defined in

½0; 1�: Moreover, Gsub
out has Hausdorff dimension equal to zero.

Remark 3.1. Items 1 and 2 are well-known results (see, for instance, [15]), that we
have included for completeness.

Remark 3.2. The distribution j is continuous on the points tA½0; 1� for which bðtÞ
does not belong to the convergence region. This follows from Proposition 2.2 and
Theorem 3.1.

Remark 3.3. Note that the assumption on the finiteness of the number of poles can
be easily satisfied shrinking, if necessary, the domain U without altering the compact
set K : The hypothesis that all the poles have to be simple seems stronger than
necessary; see also Remark 4.1.

A particular but very important case corresponds to the use of equidistant nodes
for the interpolation of a meromorphic function with a finite number of poles, all of
them simple. In this case, the previous result can be more specific.

Theorem 3.2. We select xn;j ¼ tn;j ¼ j
n
; j ¼ 0;y; n; n40 (this means that, with the

previous notation, b is the identity, G ¼ ½0; 1� and VðzÞ ¼
R 1

0 ln jz � tj dt). Let us denote

by Cmax the level curve of V such that Cmax-½0; 1� ¼ f0; 1g; and we assume that f is a

meromorphic function with a finite number of simple poles, in an open neighbourhood of

Cmax and its interior. If Gouta| we have:

1. Gin is an interval centred at 1
2
; and Gout is the union of two disjoint intervals.

2. The interpolation diverges for all xAGoutWf0; 1g:
3. The set Gsub

out is uncountable and dense in Gout: The Hausdorff dimension of Gsub
out is

zero.
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Theorem 3.2 can be directly applied to a well-known example introduced by
Runge [10], where he showed the divergence of the interpolating polynomials on
some points of the set Gout:

3.1. Application to an example by Runge

Consider the interpolation of the function

f ðxÞ ¼ 1

1þ x2
; ð3Þ

using equidistant abscissas on the interval ½�5; 5�: In this case, the distribution

associated to the triangular scheme is given by jðtÞ ¼ 1
10
ðt þ 5Þ; and the

corresponding Borel measure is the (normalised) Lebesgue measure. The logarithmic
potential for this case is given by

VðzÞ ¼
Z 5

�5

ln jz � tj dt: ð4Þ

As VðzÞ is symmetric with respect to the real axis, and the poles of (3) are x ¼ 7i;
the convergence region is given by

CR ¼ fzAC such that VðzÞoVðiÞg: ð5Þ

The boundary of the convergence region (the curve VðzÞ ¼ VðiÞ) cuts the real line in
two points, tRE3:633384302388 and �tR: Hence, the convergence is assured inside

the region (5) and, for ze½�5; 5�, %CR; the interpolation is divergent. The behaviour
on the part of ½�5; 5� outside CR has not been previously studied using the
logarithmic potential (4), due to its singular character. By using specific techniques
for this example, several authors have shown the lack of convergence for some values
zA½�5; 5�WCR (see [3,5,7,10,13]). The results in this paper are based on the use of the
logarithmic potential (4), and imply divergence (to N) on a full Lebesgue measure
subset of ½�5;�tR�,½tR; 5�: A more detailed study (see the proof of Theorem 3.2)
shows that the convergence set is not only of zero measure, but it only contains two
points: 75 (note that these points are always interpolating abscissas, so the
convergence follows trivially). If zAð�5;�tRÞ, ðtR; 5Þ then we distinguish two
categories: (i) ‘‘convergence to infinity’’ (full measure), or (ii) there are partials
convergent to f ðzÞ (zero Hausdorff dimension but uncountable and dense). We are
not aware of similar results in the literature, and we refer to the proof of Theorem 3.2
for the details. We stress that these results only depend on the location of the poles of
f ; and not on the function itself.

3.2. A counterexample

A natural question is whether the results in Theorem 3.1 for general interpolating
schemes can be improved in the direction of Theorem 3.2. In other words, we can ask
if, under the hypotheses of Theorem 3.1, the divergence takes place on all the points
of Gout and not only on a full measure subset.
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This section contains an example showing that such a result cannot be true in
general. The example uses a triangular scheme with a uniform distribution (and
without equidistant nodes!), and the subset of points z of Gout on which fPnðzÞgn

converges to f ðzÞ is dense on Gout:
The triangular scheme fxn;jg0pjpn;nX0 will be taken on ½0; 1�CC or, in other words,

bðtÞ ¼ t: As before, we assume that we are interpolating a meromorphic function f ;
such that the convergence region C ¼ fzAC=VðzÞoV0g does not contain the whole
interval ½0; 1�; that is, we assume that we can split ½0; 1� as ½0; t0�,ðt0; t1Þ,½t1; 1� such
that C-½0; 1� ¼ ðt0; t1Þ; being 0ot0ot1o1: Let us start by defining the usual

equidistant nodes on ½0; 1�; t%n;j ¼ j=n; j ¼ 0;y; n; nX1; and let n : N-Q-½0; 1� be
a one-to-one map. Let us select a real value aAð0; 1Þ; and let us define the values t̂n;j

as follows:

t̂n;j ¼
t%n;j if j4na;

nðjÞ if jpna:

(

Finally, let us define the triangular scheme tn;j as the result of sorting the values t̂n;j

for each n (that is, tn;jptn;k if jpk). Of course, this sorting is only necessary to match

the previous definition of triangular scheme.
Let us now compute the distribution of the scheme ftn;jgn;j :

lim
n-N

#fjpn=tn;jptg
n þ 1

¼ lim
n-N

½nt� þ OðnaÞ
n þ 1

¼ t;

where ½nt� denotes the integer part of nt: So, the scheme ftn;jgn;j is uniformly

distributed for any aAð0; 1Þ:
To apply the previous results, we have to check that the triangular scheme has

regular nodes. In this case, we have that an;j is zero except for a number of j values of

OðnaÞ; for each n: On the other hand, it is not difficult to see that,

mð½tn;j; tn;jþ1�Þp
na þ 1

n
:

This estimate corresponds to the worst case, namely tn;0 ¼ 0 and tn;1 ¼ ½na þ 1�=n:
Then, we can easily bound the value jan;jj:

jan;jjpnmð½tn;j; tn;jþ1�Þ þ 1p na þ 2:

Then, if we add the assumption ao1
2
; we have that, for any indices p and q;

0p
Xq

j¼p

an;j

n
ln n

�����
�����p

Xn�1

j¼0

jan;jj
n

ln n p OðnaÞ na þ 2

n
ln n ¼ bn-0

when n-N:

This implies that the nodes are regular on ½0; 1�: Hence, we are under the assumptions
of Theorem 3.1. So, we can also ensure that there exists a full measure subset of
½0; t0�,½t1; 1� for which the interpolation is divergent. On the other hand, it is clear
that any rational number r inside ½0; 1� appears in the triangular scheme, for all n
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bigger than some n0ðrÞ: This implies that we have a dense subset of ½0; t0�,½t1; 1� for
which the interpolation is convergent.

Note that if we define n as a one to one map from N on Q (instead of Q-½0; 1�),
what we obtain is that the interpolation converges on a dense subset of R; while the
support of the measure associated to the nodes is still uniform, with support on the
interval ½0; 1�: With this idea we can construct examples in which the polynomials
are convergent on a dense subset of any subset of the domain of f ; without changing
the initial (uniform or not) distribution.

4. Proofs

To facilitate the reading, the proof has been divided in several parts.

4.1. A formula for the interpolation error

The next proposition gives an expression of the error of interpolation for
meromorphic functions. This result extends a previous one contained in [12].

Proposition 4.1. Suppose that f : UCC-C and fxn;jg0pjpn;nX0 satisfy the hypotheses

of Theorem 3.1, and K is a proper interpolation set with respect to f ;U and

fxn;jg0pjpn;nX0: Then, for all xAKWfakgm
k¼1; we have

lim
n-N

RnðxÞ �
Xm

k¼1

wnðxÞ
wnðakÞ

Resðf ; akÞ
x � ak

" #
¼ 0:

Proof. First of all, we choose a point xAKWfakgm
k¼1 and define D ¼

dðx; sð½0; 1�ÞÞ40: Consider the map

gnðx; zÞ ¼ f ðzÞwnðxÞ
ðz � xÞwnðzÞ

:

Then, we claim that

lim
n-N

Z
s

gnðx; zÞ dz ¼ 0: ð6Þ

As, in particular, s is a rectifiable curve,Z
s

gnðx; zÞ dz

����
����p MN

D

Z 1

0

jwnðxÞj
jwnðsðtÞÞj

dt;

where M ¼ sups jf ðzÞj and N is the total variation of s: As K is a proper
interpolation set, (6) follows.
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On the other hand, the map gnðx; �Þ has the only poles fakgm
k¼1; x and xn;j; 0pjpn:

By the Residue Theorem:

1

2pi

Z
s

gnðx; zÞ dz ¼
X
jAJ

Resðgnðx; �Þ; ajÞ þ
1

2pi

Z
gn

gnðx; zÞ dz; ð7Þ

where jAJ iff aj belongs to the interior of the closed curve s and gn : ½0; 1�-C is a

closed C1 curve such that (a) gnð½0; 1�Þ is contained in the interior of s; (b)
xn;0;y; xn;n is contained in the interior of gn; (c) f has no poles neither in gnð½0; 1�Þ
nor in the interior of gn; (d) x belongs to the interior of gn (see Fig. 1).

By computing all the residues, and taking into account the expression of the
interpolating polynomial, we obtain

1

2pi

Z
s

gnðx; zÞ dz ¼ �
X
jAJ

wnðxÞ
wnðajÞ

Resðf ; ajÞ
ðx � ajÞ

þ f ðxÞ � PnðxÞ: ð8Þ

Finally, as K is a proper interpolation set, if aj is a pole such that jeJ; we have

lim
n-N

wnðxÞ
wnðajÞ

¼ 0: ð9Þ

If we make n tend to infinity in Eq. (8) and take into account (6) and (9), we easily
find the formula for the interpolation error of the proposition. &

Remark 4.1. The only place where we use the condition that the poles are simple is in
Proposition 4.1, to derive formula (8) from formula (7). Similar formulas can be
derived for poles of different multiplicities, and the results of this paper should
follow in a similar way.

x

x3,0

x3,1

x3,2

x3,3

α2

α1

β

γn σ

Fig. 1. A possible configuration for b;s; x; gn; xn;0;y;xn;n ðn ¼ 3Þ and the poles aj :
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4.2. The asymptotic behaviour of wn

Next propositions describe the behaviour of wnðxÞ when n tends to infinity.

Proposition 4.2. Let fxn;jgnX0;0pjpkðnÞ be an interpolation scheme on a parametrised

curve b : ½0; 1�-C; having a distribution j: Denote by m the Borel measure associated

to j and by G the closure of the scheme. Then:

1. If xACWG then

lim
n-N

ln jwnðxÞj
kðnÞ þ 1

¼
Z 1

0

ln jx � bðtÞj dm:

2. If xAG then

(a) If
R 1

0 ln jx � bðtÞj dm ¼ �N;

lim
n-N

ln jwnðxÞj
kðnÞ þ 1

¼
Z 1

0

ln jx � bðtÞj dm ¼ �N:

(b) If
R 1

0 ln jx � bðtÞj dm is finite,

lim sup
n-N

ln jwnðxÞj
kðnÞ þ 1

p
Z 1

0

ln jx � bðtÞj dm:

Proof. The proof follows immediately from known facts. The basic ideas are first
realising that the normalised counting measures supported on ftn;jgnX0;0pjpkðnÞ have

a weak star limit m (see, for instance, [15]). Then, 1 is obvious since ln jx � bðtÞj is
continuous in t; 2(a) and (b) are consequences of the principle of descent (see
[11]). &

Now, we have an easy way to find proper interpolation sets.

Proposition 4.3. Let UCC be an open and simply connected set, f : U-C a

meromorphic function with a finite number of poles that are simple and b : ½0; 1�-C a

parametrised curve such that bð½0; 1�ÞCU : Let V be the level function associated to the

interpolation scheme fxn;jg0pjpn;nZ0Cbð½0; 1�Þ; and assume that there exists V1AR

such that the set CV1
¼ fzAC: VðzÞoV1g satisfies %CV1

CU : If KCU is a compact set

satisfying

1. (K a|:
2. fxn;jg0pjpn;nX0CK :

3. K is contained in a connected component of the set CV1
:

Then, CV1
is simply connected and K is a proper interpolation set.
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Proof. As GCKCCV1
; Lemma A.2 implies that CV1

is simply connected. Let V2 be a
real value such that V1oV2 and CV2

CU : Lemma A.2 implies the existence of a
closed and simple curve s : ½0; 1�-C such that: (a) for all tA½0; 1�; V1oVðsðtÞÞoV2;
and (b) CV1

is contained in the interior of s (therefore, K is also contained in the
interior of s). We note that this curve can be selected so that it does not contain any
pole of f (we recall that the number of singularities of f is finite). Now we can check
that the requirements of Definition 2.3 are fulfilled. It is clear that the only points
that need to be verified are the two limits in items 3 and 4.

Hence, we take xAK and zAsð½0; 1�Þ; and define anðzÞ ¼ jwnðxÞj1=n=jwnðzÞj1=n and
Vs ¼ mintA½0;1� VðsðtÞÞ: Taking logarithms, we can apply Proposition 4.2 to obtain

lim sup
n-N

anðzÞpexpðVs � V1Þo1

and this implies the limit in item 3 of Definition 2.3. The limit in item 4 can be proved
in a similar way. &

Remark 4.2. Note that, if GCCV1
; then %CV1

is a proper interpolation set. We stress
that not all the proper interpolation sets have to be the closure of a level set.

The next proposition, jointly with Proposition 4.5, extends Lemma 3.4 in [6] to
more general interpolating schemes.

Proposition 4.4. Let fxn;jgnX0;0pjpkðnÞ be an interpolation scheme on a parametrised

curve b : ½0; 1�-C: Denote by m the Borel measure associated to the interpolation

scheme. Suppose that t0A½0; 1� satisfies that there exist c040; t42 and an infinite set

Nðt0ÞCN such that

jbðtn;jÞ � bðt0ÞjX
c0

kðnÞt ð10Þ

for all nANðt0Þ and all 0pjpkðnÞ: Then, if fxn;jgnX0;0pjpkðnÞ has regular nodes at t0;

we have

lim
n-N

nANðt0Þ

ln jwnðbðt0ÞÞj
kðnÞ þ 1

¼
Z 1

0

ln jbðt0Þ � bðtÞj dm;

where wnðxÞ ¼
QkðnÞ

j¼0 ðx � xn;jÞ:

Proof. Note that, renumbering the elements of Nðt0Þ and suppressing the rows of the
interpolating scheme whose index does not belong to Nðt0Þ; the problem is reduced
to the case Nðt0Þ ¼ N: Hence, we will only focus on this case. Moreover, we define
x ¼ bðt0Þ and f ðtÞ ¼ ln jx � bðtÞj; tA½0; 1�: We can also assume that f is integrable
and that bðt0ÞAG (if it is not, then we can apply Proposition 4.2 and obtain the
desired result).

From (10), it is clear that, for all n X 0 and 0p j p kðnÞ; t0 is different from tn;j :

Let j0 ¼ j0ðnÞ denote the maximum index j for which tn;jot0: If tn;j4t0 for all
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0p j p n we define j0 ¼ �1: Let dS be the value of d that appears in Definition 2.2.
Now, we select d40 such that the following conditions are met:

1. j is continuous on ½t0 � d; t0 þ d�-½0; 1�;
2. dpdS;
3. f ðtÞo0 if tA½t0 � d; t0 þ d�-½0; 1� and is strictly decreasing if tAðt0 � d; t0Þ-½0; 1�

and strictly increasing if tAðt0; t0 þ dÞ-½0; 1�:

Note that item 3 follows from the fact that the map t/jbðt0Þ � bðtÞj has an isolated
minimum at t ¼ t0 (we recall that b is a regular parametrisation).

Let us define the functions fn as

fnðtÞ ¼ f ðtÞw½0;t0�d�ðtÞ þ f ðtÞw½t0þd;1�ðtÞ

þ
Xj0�1

j¼pðnÞ
f ðtn;jÞw½tn;j ;tn;jþ1ÞðtÞ þ

XqðnÞ
j¼j0þ2

f ðtn;jÞwðtn;j�1;tn;j �ðtÞ;

where pðnÞ is the minimum index j such that tn;jA½t0 � d; t0 þ d�; qðnÞ is the maximum

value of j such that tn;jA½t0 � d; t0 þ d�; and that the terms f ðtÞw½0;t0�d�ðtÞ and

f ðtÞw½t0þd;1�ðtÞ vanish if t0 � do0 and t0 þ d41; respectively.

Lemma 4.1. The functions fn satisfy

1. fn is majorised by a m-integrable function F ; that is jfnjp F ; for all n X 0:
2. The sequence ffnðtÞgnX0 tends to f ðtÞ for almost all tA½0; 1�; with respect to the

measure m:

Proof. Let us start by the case t0ef0; 1g: Note that f ðtÞo0 if tA½t0 � d; t0 þ d�; and
that f ðtÞ is strictly decreasing if t0 � dotot0 and strictly increasing if t0otot0 þ d:
This implies that jfnðtÞjp jf ðtÞj for all tA½0; 1�: Therefore, as we are assuming that f

is integrable on ½0; 1�; we can take FðtÞ ¼ jf ðtÞj and this proves the first item of the
lemma.

To prove the second item, let us define TdC½t0 � d; t0 þ d� as the set of values
tA½t0 � d; t0 þ d�Wft0g for which there exists ntAN such that

(a) for all n X nt there exists jðnÞ with tn;jðnÞototn;jðnÞþ1;

(b) limn-N tn;jðnÞ ¼ limn-N tn;jðnÞþ1 ¼ t:

It is clear that fnðtÞ tends to f ðtÞ if tA½0; 1�W½t0 � d; t0 þ d�: We will finish the proof
by showing that ffnðtÞgnX0 tends to f ðtÞ for tATd; and that mðTdÞ ¼ mð½t0 � d; t0 þ
d�Þ:

So, let us select a fixed value tATd: As tat0; there exists n1 X nt such that
t0eðtn;jðnÞ; tn;jðnÞþ1Þ: Therefore, if nXn1; we have that jðnÞaj0: Now we distinguish

two cases: jðnÞoj0 or jðnÞ4j0: For the first case we have

fnðtÞ ¼ ln jx � bðtn;jðnÞÞj ¼ f ðtn;jðnÞÞ;
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and, for the second one,

fnðtÞ ¼ ln jx � bðtn;jðnÞþ1Þj ¼ f ðtn;jðnÞþ1Þ:

As f is continuous at t; we conclude that fnðtÞ-f ðtÞ:
To see that mðTdÞ ¼ mð½t0 � d; t0 þ d�Þ; let us define ACðt0 � d; t0 þ dÞ as the set of

values t for which jðtÞ is locally constant. Clearly, A is an open set and, hence, there
exist disjoint open intervals Im; mAN; such that A ¼

S
m Im and j is constant on each

Im: Then, as mðImÞ ¼ mð %ImÞ ¼ 0 (this follows from the continuity of j on

½t0 � d; t0 þ d�), we have that mð
S

m
%ImÞ ¼ 0: Let us define the set B as

B ¼ ðt0 � d; t0 þ dÞW
[
n;j

ftn;jg
 ![ [

m

%Im

 ![
ft0g

" #
:

As mðBÞ ¼ mð½t0 � d; t0 þ d�Þ; we will finish the proof by showing that BCTd: Hence,
let us select a value tAB: We will proceed by steps.

(i) j is strictly increasing at t: if it is not, it means that there exists t1at such that
jðt1Þ ¼ jðtÞ: This implies that the closed interval with endpoints t1 and t has zero

measure, so it is contained in one of the %Im defined above. Therefore, teB:
(ii) There exists nt such that, for each nXnt; there is a value jðnÞ satisfying

tn;jðnÞototn;jðnÞþ1: Note that, for all t1 and t2 in ½t0 � d; t0 þ d� such that t1otot2; we

have that mð½t1; t�Þ and mð½t; t2�Þ are both strictly positive. This implies that both
intervals ½t1; t� and ½t; t2� must contain, from some n ¼ nt on, several values tn;j:

(iii) limn-N tn;jðnÞ ¼ limn-N tn;jðnÞþ1 ¼ t: Apply the last paragraph for a sequence

of values t1 and t2 converging to t:
Finally, note that the proof for the case t0Af0; 1g can be obtained with minor

modifications of the previous proof. &

Following with the proof of the proposition, we have that:

Z t0þd

t0�d
fn dm ¼

Xj0�1

j¼pðnÞ
f ðtn;jÞmð½tn;j; tn;jþ1�Þ þ

XqðnÞ
j¼j0þ2

f ðtn;jÞmð½tn;j�1; tn;j�Þ

¼
Xj0�1

j¼pðnÞ

1

kðnÞ f ðtn;jÞ þ
XqðnÞ

j¼j0þ2

1

kðnÞ f ðtn;jÞ þ
Xj0�1

j¼pðnÞ

an;j

kðnÞ f ðtn;jÞ

þ
XqðnÞ

j¼j0þ2

an;j�1

kðnÞ f ðtn;jÞ;

where the values an;j are defined in (2). Let us now define

wðdÞ
n ðxÞ ¼

YqðnÞ
j¼pðnÞ

ðx � xn;jÞ;
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that is, the ‘‘part’’ of wn corresponding to ½t0 � d; t0 þ d�: Therefore,

ln jwðdÞ
n ðxÞj

kðnÞ ¼ S1 þ S2 � S3;

where

S1 ¼
Z t0þd

t0�d
fn dm; S2 ¼

1

kðnÞ ðf ðtn;j0Þ þ f ðtn;j0þ1ÞÞ

and

S3 ¼
Xj0�1

j¼pðnÞ

an;j

kðnÞ f ðtn;jÞ þ
XqðnÞ

j¼j0þ2

an;j�1

kðnÞ f ðtn;jÞ:

Now we will study the limit of S1; S2 and S3 when n tends to infinity. By the

hypotheses of the proposition, jbðt0Þ � bðtn;jÞjXc0=kðnÞt for nX0 and 0pjpkðnÞ:
Then, as f is negative on ½t0 � d; t0 þ d�-½0; 1�; we have that

ln c0 � t ln kðnÞ
kðnÞ p

f ðtn;j0Þ
kðnÞ p 0

and

ln c0 � t ln kðnÞ
kðnÞ p

f ðtn;j0þ1Þ
kðnÞ p 0:

Hence,

lim
n-N

S2 ¼ 0:

Using Lemma 4.1 and Lebesgue’s Dominated Convergence Theorem, we obtain

lim
n-N

S1 ¼
Z t0þd

t0�d
f dm:

Next, we define

sn;j ¼
Xj

c¼pðnÞ

an;c

kðnÞ; pðnÞp j p j0 � 1; ŝn;j ¼
XqðnÞ�1

c¼j

an;c

kðnÞ; j0 þ 1p j p qðnÞ � 1:
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Now, using Abel’s summation formula, we can write

Xj0�1

j¼pðnÞ

an;j

kðnÞ f ðtn;jÞ ¼
Xj0�2

j¼pðnÞ
sn;jðf ðtn;jÞ � f ðtn;jþ1ÞÞ þ sn;j0�1f ðtn;j0�1Þ;

XqðnÞ
j¼j0þ2

an;j�1

kðnÞ f ðtn;jÞ ¼
XqðnÞ�1

j¼j0þ2

ŝn;jðf ðtn;jþ1Þ � f ðtn;jÞÞ þ ŝn;j0þ1f ðtn;j0þ2Þ:

Then, using that f is decreasing on ½t0 � d; t0Þ; increasing on ðt0; t0 þ d�; and negative
on both intervals, we have

jS3jp
Xj0�2

j¼pðnÞ
jsn;jjðf ðtn;jÞ � f ðtn;jþ1ÞÞ þ jsn;j0�1jjf ðtn;j0�1Þj

þ
XqðnÞ�1

j¼j0þ2

jŝn;jjðf ðtn;jþ1Þ � f ðtn;jÞÞ þ jŝn;j0þ1jjf ðtn;j0þ2Þj:

As the nodes tn;j are regular at t0 (see Definition 2.2), there exist values bn-0 such

that

jsn;jjp
bn

lnðkðnÞÞ; pðnÞpjpj0 � 1; jŝn;jjp
bn

lnðkðnÞÞ; j0 þ 1pjpqðnÞ � 1:

Therefore, we can bound jS3j as

jS3jp
bn

lnðkðnÞÞ½f ðtn;pðnÞÞ � 2f ðtn;j0�1Þ þ f ðtn;qðnÞÞ � 2f ðtn;j0þ2Þ�

p 6
bn

lnðkðnÞÞ jlnðc0Þ � t lnðkðnÞÞj:

Hence,

lim
n-N

S3 ¼ 0:

With all this we have proved that, if x ¼ bðt0Þ;

lim
n-N

ln jwðdÞ
n ðxÞj

kðnÞ þ 1
¼
Z t0þd

t0�d
f dm:

To finish the proof, we will show a similar identity on the set
Dd ¼ ½0; 1�W½t0 � d; t0 þ d�: Note that we can assume that d is small enough such
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that mðDdÞ40 (this follows from the continuity of j at t0). For each n; let us
define Jn as the set of indices j such that tn;jADd (in other words,

Jn ¼ f0;y; pðnÞ � 1; qðnÞ þ 1;y; kðnÞg). Then, it is not difficult to check that

lim
n-N

#Jn

kðnÞ þ 1
¼ mðDdÞ: ð11Þ

Let us now consider the subscheme fxn;jgnX0;jAJn
; and let #j and #m be the

corresponding distribution and Borel measure. We note that

#mðIÞ ¼
1

mðDdÞ
mðIÞ if ICDd;

0 if IC½t0 � d; t0 þ d�:

8<
: ð12Þ

As t0 does not belong to the closure of the subscheme, we can apply Proposition 4.2
to obtain

lim
n-N

X
jAJn

f ðtn;jÞ
#Jn

¼
Z 1

0

f ðtÞ d #m:

Now, taking into account Eq. (11) and (12), we can derive

lim
n-N

X
jAJn

f ðtn;jÞ
kðnÞ þ 1

¼
Z

Dd

f dm:

This finishes the proof of the proposition. &

4.3. Estimates on measures and dimensions

Let fxn;jgnX0;0pjpn be a triangular scheme on a piecewise C1 curve b : ½0; 1�-C: In

what follows, c40 and t42 will denote real numbers, and n0X1 will be a natural
number. We define the following sets:

Dðc; t; n0Þ ¼ tA½0; 1�=8nXn0; 8jAf0;y; ng: jbðtÞ � bðtn;jÞjX
c

nt

n o
and

D ¼
[
c40

[
t42

[
n0X1

Dðc; t; n0Þ:

Proposition 4.5. The above-defined set DC½0; 1� has Lebesgue measure equal to 1. The

set ½0; 1�WD has Hausdorff dimension equal to 0.
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Proof. As Dðc; t; n0ÞC½0; 1�; but the condition used to define this set is stated on
bð½0; 1�ÞCC; we need to ‘‘translate’’ it to the parameter space ½0; 1�: Hence, we define
the sets

Bðc; t; n0Þ ¼ tA½0; 1�=8nXn0; 8jAf0;y; ng: jt � tn;jjX
c

nt

n o

and

B ¼
[
c40

[
t42

[
n0X1

Bðc; t; n0Þ:

We choose 0 ¼ d0od1o?ods�1ods ¼ 1 such that, for any interval ½dr; drþ1�; we
have

(a) either Re d
dt
bðtÞa0 or Im d

dt
bðtÞa0 for all tA½dr; drþ1�;

(b) b is C1 on ½dr; drþ1�:

We will use a couple of lemmas.

Lemma 4.2. BWfd0;y; dsgCD:

Proof. We define Ir ¼ ðdr; drþ1Þ: Given t0ABWfd0;y; dsg there exists an index r

such that t0AIr: We will focus on the case Re d
dt
bðtÞa0 for all tAIr (the case

Im d
dt
bðtÞa0 is similar). Then there exist n1X1; c140 and t42 such that, for all

nXn1 and all 0pjpn; we have

jt � tn;jjX
c1

nt

As inf tAIk
jRe d

dt
bðtÞj ¼ c240 (the parametrisation b is regular), by the mean value

theorem we obtain

jbðt0Þ � bðtn;jÞjXjRe bðt0Þ �Re bðtn;jÞjXc2jt0 � tn;jjX
c1c2

nt

for all tn;jAIr: On the other hand, there exists a constant c340 such that for all teIr;

jbðt0Þ � bðtÞj4c3: Then we can select n0 such that c1c2
nt
oc3; for all nXn0: If we define

c0 ¼ c1c2; we have

jbðt0Þ � bðtn;jÞjX
c0

nt

for all nXn0 and 0pjpn: This finishes the proof of the lemma. &

Lemma 4.3. The set ½0; 1�WB has Hausdorff dimension equal to 0. The set BC½0; 1�
has Lebesgue measure equal to 1.

À. Jorba, J.C. Tatjer / Journal of Approximation Theory 120 (2003) 85–110104



Proof. Let us define the sets

In0;t;c;n;j ¼ tA½0; 1�=jt � tn;j jo
c

nt

n o
;

In0;t;c ¼
[

nXn0

[n
j¼0

In0;t;c;n;j;

B0 ¼
\
c40

\
t42

\
n0X1

In0;t;c:

Note that, with these definitions, B0 ¼ ½0; 1�WB:
We recall [4] that the s-dimensional Hausdorff measure of B0; H

sðB0Þ; is defined
as

HsðB0Þ ¼ lim
d-0

Hs
dðB0Þ;

being

Hs
dðB0Þ ¼ inf

X
i

diamðUiÞs such thatfUigi is a d-cover of B0

( )
;

where a d-cover is a cover by a finite or countable number of sets of diameter not
bigger than d: The Hausdorff dimension of B0; dimHðB0Þ; is then defined as

dimHðB0Þ ¼ inffsX0: HsðFÞ ¼ 0g ¼ supfsX0: HsðFÞ ¼ Ng:

The idea is to show that the Hausdorff measure of B0; is zero for all s40: This will
prove that the Hausdorff dimension of B0 is 0.

Let us select sAð0; 1Þ: Note that fIn0;t;c;n;jgnXn0;0pjpn is a cover of B0; for all n0X1;

t42 and c40: Now we select a value dAð0; 1Þ: As

diamðIn0;t;c;n;jÞ ¼
2c

nt ;

if we take c ¼ d=2 we have that fIn0;t;c;n;jgnXn0;0pjpn is a d-cover of B0 for all n0X1

and t42: Hence,

Hs
dðB0Þp

X
nXn0

Xn

j¼0

diamðIn0;t;c;n;jÞ
s ¼

X
nXn0

ðn þ 1Þ d
s

nst:

Now, selecting t ¼ 3=s (note that t42) we have

Hs
dðB0Þpds

X
nXn0

n þ 1

n3
pMds;

where M40 does not depend on n0: This implies that HsðB0Þ ¼ 0 (in fact, this also
shows that Hs

dðB0Þ ¼ 0; see [4]) and, hence, that the Hausdorff dimension of B0 is

zero. In particular, this implies that the Lebesgue measure of B0 is also zero and,
therefore, that B has total measure on ½0; 1�: &

The proof of the proposition is now an immediate consequence of these two
lemmas. &

À. Jorba, J.C. Tatjer / Journal of Approximation Theory 120 (2003) 85–110 105



Remark 4.3. Note that, by Proposition 4.4, if t0AD and the scheme has regular
nodes at bðt0Þ then

lim
n-N

ln jwnðbðt0ÞÞj
n þ 1

¼
Z 1

0

ln jbðt0Þ � bðtÞj dm:

4.4. Proof of Theorem 3.1

We will proceed item by item.
1. By Proposition 4.1, to have convergence of the polynomial interpolation in a

point xAK it is enough that

lim sup
n-N

ln jwnðxÞj
n þ 1

oVða0Þ:

Moreover, by Proposition 4.2, this inequality is true if VðxÞoVða0Þ: It is clear that,

in the case xA (K; this convergence is locally uniform.
2. This is an immediate consequence of Propositions 4.1 and 4.2.
3. We select a value y in the relative interior of Gout in bð½0; 1�Þ; and let Ay be a

closed interval such that: (a) Ay is a neighbourhood of y; and (b) Ay is contained in

the relative interior of Gout: Let us define In0
as

In0
¼
[

nXn0

[n
j¼0

fxAAy=jx � xn;jjocðnÞg;

where cðnÞ is a strictly positive function—to be selected later on—that goes to zero
when n goes to infinity. Moreover, let us define

I ¼
\

n040

In0
:

As In0
are open and dense sets (with respect to the induced topology in the closed set

Ay), and In0þ1CIn0
; we have that I is an uncountable dense subset of Ay:

Now, we select xAI and we will show that there exists a partial of fPnðxÞgn

convergent to f ðxÞ: From Proposition 4.1, it is enough to show that, for any
xAICG; the sequence

rn ¼
Xm

k¼1

wnðxÞ
wnðakÞ

Resðf ; akÞ
x � ak

has a subsequence convergent to zero. We define positive numbers M1;M2 and M3

such that

max
1pkpm

Resðf ; akÞ
x � ak

����
����pM1; sup

n;j
jx � xn;jjpM2; inf

n;j;k
jak � xn;jjXM340:

Let j0 ¼ j0ðnÞ be such that jx � xn;j0 j ¼ min0pjpn jx � xn;jj: As xAI we have that, for

all n040; there exist nXn0 such that jx � xn;j0 jocðnÞ: Then:

jrnjpmM1Mn
2Mnþ1

3 jx � xn;j0 jpM4Mn
5cðnÞ;
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where M4 ¼ mM1M3 and M5 ¼ M2M3: Now, let us select the function c in such a
way that Mn

5cðnÞ goes to zero when n goes to infinity (for instance, it is enough to

take cðnÞ ¼ 1=n!). So far, we have proved that for all n0; there exist values nXn0 such
that jrnjpM4Mn

5cðnÞ: Hence, there exists a subsequence of frngn that is convergent

to zero.

Now, as ICAyCGout; we have that ICGsub
out : This implies that Gsub

out is uncountable,

and that yAGsub
out : This finishes the proof of this item.

4. As the triangular scheme fxn;jg0pjpn;nX0 has regular nodes on the set Gout; we

can apply Propositions 4.4 and 4.5 (see also Remark 4.3) to derive the existence of a
total Lebesgue measure set DC½0; 1� such that, if xAbðDÞ;

lim
n-N

ln jwnðxÞj
n þ 1

¼
Z 1

0

ln jx � bðtÞj dm:

Finally, as VðxÞ4Vða0Þ; the divergence (to infinity) of the sequence RnðxÞ follows.

As the Hausdorff dimension of b�1ðGsub
outÞ is zero (see Proposition 4.5), the bi-

Lipschitz character of b implies that the Hausdorff dimension of Gsub
out is also zero

[4]. &

4.5. Proof of Theorem 3.2

It is clear that ftn;jg0pjpn;nX1 is uniformly distributed with regular nodes. The next

lemma shows an interesting property of this triangular scheme.

Lemma 4.4. Let tAð0; 1Þ; and let us define the set N0
t CN as

N0
t ¼ nAN such that jtn;j � tj4 c

nt; 8jAf1;y; n � 1g
n o

:

Then, if cp1
2

and tX3; Nt has infinitely many elements.

Proof. For simplicity, we select the values c ¼ 1
2
and t ¼ 3 (note that if the result

holds for these values, it then holds for any cp1
2
and tX3).

The statement of the lemma follows immediately from the fact that, if neN0
t ; then

n þ 1AN0
t : Hence, we assume that neN0

t so there exists a natural number c (0ocon)

such that

jtn;c � tjp c

nt: ð13Þ

Then, for any 0ojon þ 1;

j

n þ 1
� t

����
����X j

n þ 1
� c

n

����
����� c

n
� t

����
����

����
����: ð14Þ

Moreover,

j

n þ 1
� c

n

����
���� ¼ 1

nðn þ 1Þjjn � cðn þ 1Þj
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and using that, for all n; c and j such that 0ocon and 0ojon þ 1 we have
jnacðn þ 1Þ; it follows that

j

n þ 1
� c

n

����
����X 1

nðn þ 1ÞX
c

n2
:

Now, putting this lower bound in (14) and using (13), we obtain

j

n þ 1
� t

����
����X c

n2
� c

n3
X

c

ðn þ 1Þ3
; if nX2:

This shows that n þ 1AN0
t : &

Remark 4.4. The values for c and t used in this lemma are not optimal.

For technical reasons, in the last lemma we have excluded the values j ¼ 0 and n in

the definition of the set N0
t : So, we define

Nt ¼ nAN such that jtn;j � tj4 c

nt; 8jAf0;y; ng
n o

:

Corollary 4.1. NtCN0
t is an infinite set.

Proof. If mAN0
t WNt; we must have either

jtjp c

mt or j1� tjp c

mt

and it is clear that there is only a finite set of values m satisfying this condition.

Therefore, N0
t WNt must be finite and then Nt must be infinite. &

Remark 4.5. These results are valid, in particular, for any tAQ-ð0; 1Þ ¼S
nX0

Sn�1
j¼1 ftn;jg:

Let us now start with the proof of the theorem. As item 1 is a well-known result
(see, for instance, [15]) and item 3 follows from Theorem 3.1 (in this case, Gout is
relatively open in ½0; 1�), we only focus on the proof of item 2.

From Proposition 4.4 and Corollary 4.1, it follows that, for all tAð0; 1Þ;

lim
n-N

nANt

ln jwnðtÞj
n þ 1

¼
Z 1

0

ln jt � sj ds:

We define now K ¼ Cmax: To apply Proposition 4.3, we select V1 such that
CmaxCCV1

and f is still defined on a neighbourhood of the closure of CV1
: It turns

out that K is a proper interpolation set with respect to f and CV1
:

Hence, if RnðtÞ denotes the interpolating error at t; and tAGout; using Proposition
4.1 and that VðtÞ4VðiÞ; we have

lim
n-N

nANt

RnðtÞ ¼ N:
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This is, the sequence of interpolating polynomials fPnðtÞgnAN has a subsequence that

diverges to infinity.

Remark 4.6. As a side point, note that, if tAQ-½0; 1�; there exists a subsequence of
fPnðtÞgnAN that converges to the value f ðtÞ: This subsequence can be easily obtained

as follows: if t ¼ k
m
; then we take the values n that are multiple of m: In this way, the

point t is always contained in the interpolating nodes. This shows that the sequence
fPnðtÞgnAN can also have convergent subsequences.
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Appendix A. Technical lemmas

Here we have included some technical lemmas used along the proofs. We keep the

same notation as in the paper, that is, b : ½0; 1�-C is a piecewise C1 curve,
fxn;jg0pjpn;nX0Cbð½0; 1�Þ is a triangular scheme with closure G; distribution j; and
associated Borel measure m: V will be the corresponding logarithmic potential (1).

Lemma A.1. Let V1 be a real number, and let Aa| be one of the connected

components of fzAC: VðzÞoV1g: Then, mðb�1ðA-GÞÞ40:

Proof. Assume that mðb�1ðA-GÞÞ ¼ 0: If A-G ¼ | then, as there are no singularities
of (1) inside A; V is harmonic on A: As V takes the constant value V1 on the
boundary of the bounded set A; by the maximum principle, V must take the constant

value V1 on A: As the points xAA satisfy VðzÞoV1 this forces A ¼ |; which is absurd.

Suppose now that A-Ga|: Then, for each xAA-G; there exists a connected
open neighbourhood BðxÞ of x such that BðxÞCA and there exists t1 and t2 inside
½0; 1� (t1ot2) such that bð½t1; t2�ÞCBðxÞ-G: As mð½t1; t2�Þ ¼ 0; (1) can be written as

VðxÞ ¼
Z t1

0

ln jx � bðtÞj dmþ
Z 1

t2

ln jx � bðtÞj dm:

Therefore, V is harmonic on BðxÞ: This shows that V is harmonic on an open set

containing A-G and, hence, on all A: As in the previous case, we have that A ¼ |;

which is again absurd. Hence, mðb�1ðA-GÞÞ40: &
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Lemma A.2. Let V0 be a real number such that G is contained in a connected

component of CV0
¼ fzAC: VðzÞoV0g: Then,

(a) the set CV0
is simply connected,

(b) for all V14V0; there exists a piecewise C1; closed and simple curve s : ½0; 1�-C

such that CV0
is contained in the interior of s and V0oVðsðtÞÞoV1; 8tA½0; 1�:

Proof. By Lemma A.1, any connected component of CV0
intersects G: As G is

contained in one of these connected components, there is a unique connected
component for CV0

: This proves that CV0
is connected. Now, let us pick up a simple

closed curve inside CV0
: As the maximum of V on the region enclosed by the curve is

attained on the curve, this enclosed region has to be contained in CV0
: This proves

that CV0
is simply connected.

From the Riemann Mapping Theorem [1], there exists a one-to-one analytic
function h : CV1

-C such that hðCV1
Þ ¼ D; where D denotes the open unit disc of C:

From the definition of the sets CV0
and CV1

; and the continuity of VðzÞ for zeG; we

have that %CV0
CCV1

: Then, as hðCV0
Þ ¼ hð %CV0

ÞChðCV1
Þ ¼ D; there exists a circle

a : ½0; 1�-D enclosing hðCV0
Þ: Therefore, the curve s ¼ h�1

3a : ½0; 1�-CV1
satisfies

item (b). &
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