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Abstract

Consider a triangular interpolation scheme on a continuous piecewise C! curve of the
complex plane, and let I' be the closure of this triangular scheme. Given a meromorphic
function f with no singularities on I', we are interested in the region of convergence of the
sequence of interpolating polynomials to the function f. In particular, we focus on the case in
which I' is not fully contained in the interior of the region of convergence defined by the
standard logarithmic potential. Let us call I’y the subset of I' outside of the convergence
region.

In the paper we show that the sequence of interpolating polynomials, {P,},, is divergent on
all the points of I'oy¢, except on a set of zero Lebesgue measure. Moreover, the structure of the
set of divergence is also discussed: the subset of values z for which there exists a partial
sequence of {P,(z)}, that converges to f(z) has zero Hausdorff dimension (so it also has zero
Lebesgue measure), while the subset of values for which all the partials are divergent has full
Lebesgue measure.

The classical Runge example is also considered. In this case we show that, for all z in the
part of the interval (—5,5) outside the region of convergence, the sequence {P,(z)}, is
divergent.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The main purpose of this paper is to study the convergence, in the complex plane,
of a sequence of interpolating polynomials to a given meromorphic function . More
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specifically, let §: [0,1]—C be a simple and continuous piecewise C' curve whose
derivative is always different from zero, and assume that /" has no poles on ([0, 1]).
Let us denote by {t;}o<;<pn>0 @ triangular interpolation scheme on the interval
[0,1] (see Section 2). This scheme induces a triangular scheme {x,;}o<;cpp=0 ON
B([0, 1]) =C, by defining x,,; = f(t,,;). We will denote by {P,},-, the corresponding
sequence of interpolating polynomials; in other words, P, is the (only) polynomial of
degree less than or equal to n that satisfies P,(x,;) = f(x,,;) for all j between 0 and .
As usual, if x,;, = x,,, = -+ = x,, for r (different) values ji, we assume that P, also
interpolates the first » — 1 derivatives of /" on the point x,,j,. Then, given a zeC, a
natural question is to determine if {P,(z)},-, converges to the value f(z). Classical
references for this problem are [2,13,14].

In this work we will not assume any concrete triangular scheme for the
interpolating points; we will only ask them to admit a distribution.

Definition 1.1. An interpolation scheme {xXy;}o< <0 18 said to have a distribution
if the limit

L i<
lim #4J: ta;€[0,1],0< j < n}
n— oo n+1

exists for all 7€ [0, 1], where # is used to denote the cardinal of a set. If we denote by
¢(?) the value of this limit, then ¢(¢) is known as the distribution associated to the
interpolation scheme {xy;}o<;<pnso-

A well-known interpolation scheme is obtained using equidistant nodes on a given
interval, giving rise to a linear distribution ¢. Another classical example is based on
using a finite number of different values of x,, or, in other words, applying a Taylor
interpolation method on a finite number of points. In this case, ¢ is a piecewise
constant function, and the discontinuities correspond to the position of the
interpolating nodes.

Remark 1.1. Given a distribution ¢ it can be proved that there exists a unique
probability measure u defined on the Borel sets of [0,1] such that for
0<a<b<l,u((a,b]) = *(b) — *(a), where ¢@* is the unique function which is
monotone increasing, continuous on the right, and agrees with ¢ wherever ¢ is
continuous on the right (see, for instance, [9, p. 302]). In particular, ¢*(1) = ¢(1) =
1 and u([0,1]) = 1, and, therefore, u({0}) = ¢*(0).

To study the domain of convergence of interpolation schemes with distribution ¢,
we denote by u the corresponding Borel measure and we introduce the logarithmic
potential V : C\ f([0, 1]) - R, defined by

1
V() = [ nlz=p(0)dn (1)
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Sometimes we will also refer to V' as the level function of the triangular scheme. V'
can be extended to the values ze ([0, 1]) by defining V(z) = — oo when the integral
(1) is not convergent.

Let us define I'= ([0, 1]) as the closure of the triangular scheme {X;}o<;<pns0-
Moreover, for simplicity, we will assume that f has a finite number of poles
01, ..., 0y, that all of them are simple, and none of them belongs to I'. We denote by
o a pole such that

Vi) = min V(o).

I1<k<m
Note that, as none of the oy belongs to I', |V (0g)|< oo. Then, if we define

C = {zeC such that V(z)<V(e)},
D = {zeC such that V(z)>V(a)}

it is known that the sequence {P,(z)},-, converges to f(z) if zeC, and that it
converges to oo if ze DN\I (see, for instance, [12,15]). Note that these classical
techniques do not work neither for z such that ¥V (z) = V(a), nor for zeI'n D. This
last case will be the main topic of this paper.

The situation considered here is then the following: assume that {X,;}o<;<pn>0 15
a triangular scheme on f([0, 1]), having a distribution ¢ with a Borel measure pu.
Moreover, let us write the closure of the triangular scheme I' as 'y Ul oyl
where 'y, = I'nC (I, is the part of I' inside the convergence region C), 'y =
I'n D (I'yy 1s outside C) and I'; contains the remaining points on I" (I, is the part of
I inside the level set V' (z) = V(a)). We are concerned with the behaviour of the
interpolating polynomial on I'yy.. Hence, we will focus on the case I'gy#®. Then,
although the interpolation scheme is dense on Iy, we do not expect convergence on
the full region due to the well-known Runge phenomenon [10].

In this paper we will show that the subset of zel',, for which the sequence
{P,,(z)}nzo converges to oo is of full Lebesgue measure! in I'yy. Moreover, the set
z€T oy for which there exists a subsequence of {P,(z)},-, convergent to f(z) is not
only non-empty but also dense in the relative interior of I'yy in f([0, 1]), and with
zero Hausdorff dimension (so it also has zero Lebesgue measure). In particular, if we
define I'; as the set of points ze 'y, for which the sequence {P,(2)},-, converges
to f(z), then this set has to have zero Hausdorff dimension (these are the statements
of Theorem 3.1). However, the only knowledge of the distribution ¢ is not enough to
give more information on I : for instance, the equidistant triangular scheme ﬁ
(0<j<n) on [0,1] has I'C , = 0 (see Theorem 3.2), while a suitable modification of
this triangular scheme, that still admits the same (uniform) distribution, produces a
I, that is dense in Iy (see Section 3.2). We note that Theorem 3.2 can be
immediately applied to the well-known Runge example to prove the divergence in all

'We define the Lebesgue measure of a set A= f([0,1]) as the usual Lebesgue measure of the set
B (4)<=(0.1].
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the points of I',,; except, of course, the endpoints of the interpolation interval since
they are always interpolating nodes (see Section 3.1).

To present these results, the paper has been organised as follows: Section 2
contains the notations, main definitions and basic properties about triangular
schemes and interpolation. Section 3 is devoted to the formal presentation of the
results, including the application to the Runge example. Finally, Section 4 is devoted
to the proofs of the main results and Appendix A contains some properties of the
level sets of the logarithmic potential.

A natural extension of these results is to consider interpolating schemes whose
closure is not contained in a curve of C. This is work in progress.

2. Basic definitions and properties

This section introduces the main definitions used in the paper. They refer to the
distribution of the nodes (Sections 2.1 and 2.2) and to the sets where the convergence
is studied (Section 2.3).

2.1. Schemes and distributions

Let {Xuj}o<j<nnso be a triangular scheme, having a distribution ¢ with the
associated Borel measure p. In this paper, we will restrict ourselves to cases in which
¢ is continuous on Iy, = I'n D. Apparently, we are ruling out a typical situation for
the distribution of an interpolation scheme: discontinuities. They usually correspond
to interpolate an increasing number of derivatives of the interpolated function f at a
given point, or to a very high accumulation of interpolating points in a small region.
Note that the measure u of a discontinuity point is positive so it can be represented
by a suitable Dirac delta. Then, the logarithmic potential (1) goes to —oo when z
goes to the discontinuity point of the distribution (see Proposition 2.1); this implies
that a sufficiently small neighbourhood of this point (and, hence, the discontinuity) is
included in the convergence region. Therefore, the assumption of the continuity of ¢
outside the convergence region seems quite natural (see Proposition 2.2).

In what follows, we will use interpolation schemes that are not triangular. The main
reason is that, in some proofs, we will use schemes obtained by selecting an infinite subset
of nodes of a given scheme. Hence, some lemmas and propositions are stated using non-
triangular schemes. We note that the technicalities of the proofs are almost identical in
the general and the triangular cases. For these reasons, we give the following definition.

Definition 2.1. Let {k(n)},-, be a sequence of natural numbers. A sequence of
complex numbers {xy;}o<ickmazo Such that x,; = B(z,;) is said to be an
interpolation scheme on f if

l. lim k(n) =

n— o0

w?
2.if0<j </ <k(n)then t,; < t,,,.
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If k(n) = n for all n = 0 the scheme is said to be triangular.

Next proposition is about the logarithmic potential V' defined in (1). It is well
known (see, for instance, [8]) that V" is a subharmonic function on C and harmonic
on C\ fi(supp 1), where supp u denotes the support of the measure u on [0, 1].

Proposition 2.1. Let V be a logarithmic potential. Then:

1. If xe C\p(supp u), then V is continuous at x.
2. If xef([0,1]) and V(x) = —oo then V is continuous at x.
3. The set Cyr = {xeC such that V(x)<M?} is open and bounded for all M e R.

Proof. The first statement holds because V' is harmonic on C\ f(supp #). The
second statement follows from the fact that 77 is subharmonic and, hence,
upper semi-continuous. The last statement also follows from upper semi-continuity
and the fact that V'(x) goes to infinity when x does. O

Proposition 2.2. Let {xy;}o<j<nns0 be a triangular scheme with closure I' < ([0, 1])

and distribution @. If M eR, let us define the sets Cy = {xeC such that V(x)<M}
and Ty = {t€[0,1] such that f(t) ¢ Cpr}. Then the distribution ¢ is continuous on Tyy.

Proof. Let #;, a point of discontinuity of ¢. If V' is the logarithmic potential
associated to the triangular scheme, then V(f(z;)) = —oo. As, by Proposition 2.1,
Vof is continuous at £, there exists an open neighbourhood U, of (f;) such that
U;= Cy and U B([0,1]) is an open interval. Therefore, ¢ has no discontinuities on
Ty. O

2.2. Regular nodes

Let {xu;j},>00<j<k(ny De an interpolation scheme, with closure I', on a
parametrised curve . Suppose that this scheme has a distribution ¢. Let us define
a,;eR as

an; = k(m)pu([tyj, taji1]) =1, j=0,....k(n)—1, (2)

where yu is the Borel measure associated to ¢. We note that the numbers a,; are zero
iff the triangular scheme is equispaced with respect to the measure pu.

Definition 2.2. If xe I, the scheme {x,;},-0<;<k(s 18 Said to have regular nodes at
the point x = () with respect to ¢ (or y) if
(a) ¢ is continuous in a neighbourhood of ¢;

(b) there exists 6 >0 such that, for all n, there exists b, >0 satisfying:
(b.1) for any p and g (p<gq) in S,(¢,6) = {j such that t,;e[t — 9,14 J]},
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we have
q—

Z fny ln (n))

=p

<by;

(b.2) lim,_, o, by = 0.

The scheme {Xy,},,>00<;<k(n i said to have regular nodes on a set I'' < I" iff it has
regular nodes at each xelI”.

Given a continuous distribution ¢, it is always possible to select a scheme
{Xu;}n>00<j<k(n Such that a,; = 0, for all n and j. Of course, the distribution of such

a scheme will be again ¢. In some sense, {X;},>0<j<k(n 18 @ “canonical scheme”

for ¢. Hence, this is a local condition on the proximity of the original scheme to a
“canonical scheme” in a neighbourhood of a given point ¢. On the other hand, it is
very easy to construct interpolation schemes with some of the a,; different from
zero: it is enough to move “‘a few” points with respect to the ““‘canonical scheme”.
The counterexample in Section 3.2 is a good example of this.

The condition given in Definition 2.2 is used in the proofs but only for technical
reasons. We do not know whether it can be removed from the statements of the
theorems.

2.3. Proper interpolation sets

Let f : U< C—C be a meromorphic function in a simply connected region U with
m simple poles {o};_ ;. Given an interpolation scheme {x,;};<r(m >0 cONtained
in U, we denote by P, the (unique) interpolating polynomial of f on the nodes
Xn0, .-+, Xnk(n) (nOte that P, is a polynomial of degree at most k(n)). To fix ideas, we
give now the well known Hermite formula for the interpolating error (see [2,14]): let
y, be a Jordan curve such that its interior (i.e., the bounded connected component of
C\7y,) contains the nodes X, ...,X,k(), and f is analytic on an open
neighbourhood of y, and its interior. Then, for all x in the interior of y,, we have

1/ wa(x)f (2) iz,

" 2mi 5, Wn (2)(2 = X)

where w,(x) = Hjli%) (x — Xnj)-

To derive information about the limit behaviour of the sequence of interpolating
polynomials, we need to work on a sufficiently big region. A sufficient (but quite
technical) condition for such a region is given in the next definition. This condition
will be used later (in Proposition 4.1) to derive an error formula for the interpolating

polynomials.
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Definition 2.3. A set K< U is said to be a proper interpolation set with respect to f
U and {xn-j}oggk(n)‘nzo if

1. K is a compact set with non-empty interior.

2. The scheme {xXy;}o<;<k(m >0 1 contained in K.

3. There exists a closed, simple, regular and piecewise C' curve ¢ : [0,1] - C such
that: ¢([0, 1]) = U, none of the poles of f belongs to ([0, 1]), K is contained in the
interior of ¢, and for all xe K,

wy(x)
n—w wy(z)

:07

uniformly for zea ([0, 1]).
4. For any pole «; of f belonging to the exterior of ¢ and any xeK,
wy(x)

lim —~L =0
ne o Wy ()

Remark 2.1. The reason to define proper interpolation sets is to work on compact
sets on which properties 3 and 4 of the previous definition hold. In fact, these
conditions are very general and, in Proposition 4.3 (see also Remark 4.2), we will
show how to construct such sets using the level sets of the logarithmic potential.

Remark 2.2. Besides, there are alternative ways of finding such sets. For instance, if
there exists a closed curve ¢ such that D = dist(a([0, 1]), K) >d = diam(K), where
diam(K) = sup, .. ¢ [y — 2|, then W () /wa(2)| < (d/D)"!, for all (x,z)eK x
a([0,1]) and therefore, K is a proper interpolation set. This condition has already
been used in [12].

3. Main results

Let {xy}o<;<nn>o D€ a triangular interpolation scheme on a continuous piecewise
C' curve B, with closure I'< B([0, 1]) and distribution ¢, and let f : UcC—C be a
meromorphic function, defined on a simply connected region U, with simple poles
{ow}y—, which do not belong to I We denote by {P,},., the sequence of
interpolating polynomials of f on the nodes {x"-j}Ogjgn,nZO' As before, let oy be a
pole such that V(a) = lg}(igm V(ox), C ={zeC such that V(z)<V(x)} and D =

{zeC such that V(z)>V(ay)}. We also define the sets I'iy, =I'nC and oy =
I'nD. Letus split Iy = IS, UT'Y,, where IS, (resp. I'Y ) denotes the set of points

out?
x€l oy on which {P,(x)},-, converges to f(x) (resp. diverges). Finally, rée s

defined as the set of xeI'S, on which {P,(x)},-, converges to infinity, and I\ is
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the set of xeI'o, on which {P,(x)},-, has a subsequence convergent to f(x) (note
that IS, = IS

out out/*
Then, under this notation and conditions, we have the following results.

Theorem 3.1. If K< U is a proper interpolation set, then:

1. If xeKnC then {P,(x)},-, converges to f(x); if xeKnC then {Pu(x)},50
converges locally uniformly to f(x).

2. If xeK, but x¢ CoI'U{a, ..., 0}, then {P,(x)},>, converges to 0.

3. If the relative interior of Toy in B([0,1]) is non-empty, then the set ' is
uncountable and dense in the relative interior of I oy.

4. Assume that the triangular scheme has regular nodes on the set I oy. Then we have

that 2~ (TE2Y)) = A~ (Tow)), where J. denotes the Lebesgue measure defined in

[0,1]. Moreover, TS has Hausdorff dimension equal to zero.

Remark 3.1. Items 1 and 2 are well-known results (see, for instance, [15]), that we
have included for completeness.

Remark 3.2. The distribution ¢ is continuous on the points #€[0, 1] for which f(¢)
does not belong to the convergence region. This follows from Proposition 2.2 and
Theorem 3.1.

Remark 3.3. Note that the assumption on the finiteness of the number of poles can
be easily satisfied shrinking, if necessary, the domain U without altering the compact
set K. The hypothesis that all the poles have to be simple seems stronger than
necessary; see also Remark 4.1.

A particular but very important case corresponds to the use of equidistant nodes
for the interpolation of a meromorphic function with a finite number of poles, all of
them simple. In this case, the previous result can be more specific.

Theorem 3.2. We select x,; =t,; = ﬁ, j=0,....,n, n>0 (this means that, with the

previous notation, f3 is the identity, I = [0, 1] and V (z) = fol In |z — t] df). Let us denote
by Ciax the level curve of V such that Cupax N[0, 1] = {0, 1}, and we assume that f is a
meromorphic function with a finite number of simple poles, in an open neighbourhood of
Cuax and its interior. If T oy 0 we have:

1. Ty, is an interval centred at %, and I oy is the union of two disjoint intervals.

2. The interpolation diverges for all x eI 4, \{0, 1}.

3. The set I'"® is uncountable and dense in T'oy. The Hausdorff dimension of I'"® is
zero.
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Theorem 3.2 can be directly applied to a well-known example introduced by
Runge [10], where he showed the divergence of the interpolating polynomials on
some points of the set I'yy.

3.1. Application to an example by Runge

Consider the interpolation of the function
|
J(x) (3)

ST
using equidistant abscissas on the interval [—5,5]. In this case, the distribution
associated to the triangular scheme is given by ¢(¢) ={;(r+5), and the
corresponding Borel measure is the (normalised) Lebesgue measure. The logarithmic
potential for this case is given by

5
V(z) = / In |z — t] dt. (4)
-5
As V(z) is symmetric with respect to the real axis, and the poles of (3) are x = +1,
the convergence region is given by

Cr = {zeC such that V(z)<V(i)}. (5)

The boundary of the convergence region (the curve V' (z) = V7 (i)) cuts the real line in
two points, g~ 3.633384302388 and —rg. Hence, the convergence is assured inside
the region (5) and, for z¢ [—5, 5] U Cg, the interpolation is divergent. The behaviour
on the part of [-5,5] outside Cr has not been previously studied using the
logarithmic potential (4), due to its singular character. By using specific techniques
for this example, several authors have shown the lack of convergence for some values
ze[—5,5]\\Ck (see [3,5,7,10,13]). The results in this paper are based on the use of the
logarithmic potential (4), and imply divergence (to co) on a full Lebesgue measure
subset of [—5, —tg]U|tr,5]. A more detailed study (see the proof of Theorem 3.2)
shows that the convergence set is not only of zero measure, but it only contains two
points: +5 (note that these points are always interpolating abscissas, so the
convergence follows trivially). If ze(—5,—tg) U (¢r,5) then we distinguish two
categories: (i) “‘convergence to infinity” (full measure), or (ii) there are partials
convergent to f(z) (zero Hausdorff dimension but uncountable and dense). We are
not aware of similar results in the literature, and we refer to the proof of Theorem 3.2
for the details. We stress that these results only depend on the location of the poles of
f, and not on the function itself.

3.2. A counterexample

A natural question is whether the results in Theorem 3.1 for general interpolating
schemes can be improved in the direction of Theorem 3.2. In other words, we can ask
if, under the hypotheses of Theorem 3.1, the divergence takes place on all the points
of I'yye and not only on a full measure subset.
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This section contains an example showing that such a result cannot be true in
general. The example uses a triangular scheme with a uniform distribution (and
without equidistant nodes!), and the subset of points z of Iy on which {P,(z)}
converges to f(z) is dense on I'oy;.

The triangular scheme {x,;}< ;<=0 Will be taken on [0, 1]=C or, in other words,

n

p(t) = t. As before, we assume that we are interpolating a meromorphic function f,
such that the convergence region C = {zeC/V(z) <V} does not contain the whole
interval [0, 1]; that is, we assume that we can split [0, 1] as [0, fo] U (¢, t1) U [#1, 1] such
that Cn0,1] = (1, 11), being O<to<t;<l. Let us start by defining the usual
equidistant nodes on [0, 1], £ ot =j/n, j=0,...,n, n=1,and letv: N->QnJ0,1] be
a one-to-one map. Let us select a real value o€ (0, 1), and let us define the values 7,;
as follows:

P t,:‘/ if j>n*,
" v(j) if j<n®

Finally, let us define the triangular scheme ¢,; as the result of sorting the values 7,;
for each n (that is, 1, ; <1, if j<k). Of course, this sorting is only necessary to match
the previous definition of triangular scheme.
Let us now compute the distribution of the scheme {z,;}, ;.
#li<n/ty<t} . [ni] + O(n”)

lim —————=lm ——~=¢
n— oo n+1 n— oo n+1

)

where [n] denotes the integer part of nt. So, the scheme {t,;},; is uniformly
distributed for any ae (0, 1).

To apply the previous results, we have to check that the triangular scheme has
regular nodes. In this case, we have that a,; is zero except for a number of j values of
O(n*), for each n. On the other hand, it is not difficult to see that,
n*+1

pa

1([tngs taji1]) <

This estimate corresponds to the worst case, namely #,0 =0 and #,; = [n* + 1]/n.
Then, we can easily bound the value |a,|:

lanjl <nul[tnj, tnjr]) +1 < n* +2.

Then, if we add the assumption oc<%7 we have that, for any indices p and g,

n—1

n “ 2
Z‘a ’|lnn (n“)n: Inn=b,-0

q

Za'”l nn

Jj=p

0<

when n— oo.

This implies that the nodes are regular on [0, 1]. Hence, we are under the assumptions
of Theorem 3.1. So, we can also ensure that there exists a full measure subset of
[0, 2] U [t1, 1] for which the interpolation is divergent. On the other hand, it is clear
that any rational number r inside [0, 1] appears in the triangular scheme, for all n
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bigger than some 7 (r). This implies that we have a dense subset of [0, 7] U [z, 1] for
which the interpolation is convergent.

Note that if we define v as a one to one map from N on Q (instead of Q |0, 1]),
what we obtain is that the interpolation converges on a dense subset of R, while the
support of the measure associated to the nodes is still uniform, with support on the
interval [0, 1]. With this idea we can construct examples in which the polynomials
are convergent on a dense subset of any subset of the domain of f, without changing
the initial (uniform or not) distribution.

4. Proofs

To facilitate the reading, the proof has been divided in several parts.

4.1. A formula for the interpolation error

The next proposition gives an expression of the error of interpolation for
meromorphic functions. This result extends a previous one contained in [12].

Proposition 4.1. Suppose that f : U=C— C and {xn;}o<j<pns0 Satisfy the hypotheses
of Theorem 3.1, and K is a proper interpolation set with respect to f,U and
{%ni}o<j<nnso- Then, for all xe K\{ox};_,, we have

. N wu(x) Res(f, o)
| R —
sty n() = wy(ox)  x— ok

Proof. First of all, we choose a point xeK\{u};, and define D=
d(x,0([0,1]))>0. Consider the map

_ S
gn(x7 Z) - (Z — X)Wn(z)'

Then, we claim that

lim [ g.(x,z)dz=0. (6)

n— oo

As, in particular, ¢ is a rectifiable curve,
MN 1 |wu(x)]
n\X, dz| < d[,
/O- g (x Z) z D /0 |V

vn(a (1))l
where M =sup, |f(z)] and N is the total variation of o. As K is a proper
interpolation set, (6) follows.
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On the other hand, the map g,(x, -) has the only poles {ax };-,, x and x,;, 0<j<n.
By the Residue Theorem:

ot [ iz d = 3 Restg(r o) + 5 [ v )

2ni Jg jel u

where jeJ iff o; belongs to the interior of the closed curve ¢ and y, : [0,1]>Cis a
closed C! curve such that (a) y,([0,1]) is contained in the interior of o; (b)
Xn0, ---, Xnn 18 contained in the interior of y,; (¢) f has no poles neither in y,([0, 1])
nor in the interior of y,; (d) x belongs to the interior of y, (see Fig. 1).

By computing all the residues, and taking into account the expression of the
interpolating polynomial, we obtain

N

% 4 jeJ W”(aj) (X—O(j)

+/(x) = Pu(x). (8)

Finally, as K is a proper interpolation set, if «; is a pole such that j¢J, we have

Wy (x)

li =0. 9

o Wi (%) ®
If we make n tend to infinity in Eq. (8) and take into account (6) and (9), we easily
find the formula for the interpolation error of the proposition. [

Remark 4.1. The only place where we use the condition that the poles are simple is in
Proposition 4.1, to derive formula (8) from formula (7). Similar formulas can be

derived for poles of different multiplicities, and the results of this paper should
follow in a similar way.

Yn o)

Fig. 1. A possible configuration for f5,0, X, ,, X50, ..., Xn, (n=3) and the poles o;.
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4.2. The asymptotic behaviour of wy
Next propositions describe the behaviour of w,(x) when n tends to infinity.

Proposition 4.2. Let {x,;},-00< <j<k(n ) be an interpolation scheme on a parametrised

curve f: [0,1]—> C, having a dzstrzbullon ¢. Denote by u the Borel measure associated
to @ and by I the closure of the scheme. Then:

1. If xeC\I then

. Injw,(x)]
HILH;QW /Oln|x B(0)| du.

2. If xeT then
(a) Iff01n|x— )|d,u——oo
1n|wn
+1 /ln|x (O] du=—o0.

114>OO k

(b) Iffo1 In |x — B(2)| du is finite,

lim sup In |W"+ | / In |x — B(2)| du.

n— o0 k

Proof. The proof follows immediately from known facts. The basic ideas are first
realising that the normalised counting measures supported on {#,;},-¢0< <j<k(n have

a weak star limit p (see, for instance, [15]). Then, 1 is obvious since In |x — (t)| is
continuous in ¢; 2(a) and (b) are consequences of the principle of descent (see
[11p. O

Now, we have an easy way to find proper interpolation sets.

Proposition 4.3. Let UcC be an open and simply connected set, f: U—C a
meromorphic function with a finite number of poles that are simple and 5 : [0,1]->C a
parametrised curve such that ([0,1])c U. Let V be the level function associated to the
interpolation scheme {Xu;}o<j<pn=0<=PB((0,1]), and assume that there exists VieR
such that the set Cy, = {zeC: V(z)<V1} satisfies Cy, < U. If K< U is a compact set
satisfying

1. K #0.
2. {an}0<j<n,n>0CK-
3. K is contained in a connected component of the set Cy,.

Then, Cy, is simply connected and K is a proper interpolation set.
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Proof. AsI'c K< Cy,, Lemma A.2 implies that Cy, is simply connected. Let V), be a
real value such that V<V, and Cyp,cU. Lemma A.2 implies the existence of a
closed and simple curve o : [0, 1] - C such that: (a) for all t€[0, 1], V1 <V (a(t)) < V2;
and (b) Cy, is contained in the interior of ¢ (therefore, K is also contained in the
interior of ¢). We note that this curve can be selected so that it does not contain any
pole of f (we recall that the number of singularities of f is finite). Now we can check
that the requirements of Definition 2.3 are fulfilled. It is clear that the only points
that need to be verified are the two limits in items 3 and 4.

Hence, we take xe K and zea([0, 1]), and define a,(z) = |w,(x)|""/|wa(2)]"/" and
Vs = min,cjo ) V(a(2)). Taking logarithms, we can apply Proposition 4.2 to obtain

lim sup a,(z)<exp(V, — V1) <1

n— oo

and this implies the limit in item 3 of Definition 2.3. The limit in item 4 can be proved
in a similar way. [

Remark 4.2. Note that, if I'=Cy,, then Cy, is a proper interpolation set. We stress
that not all the proper interpolation sets have to be the closure of a level set.

The next proposition, jointly with Proposition 4.5, extends Lemma 3.4 in [6] to
more general interpolating schemes.

Proposition 4.4. Let {x,;},-00<; i<k(n) be an interpolation scheme on a parametrised

curve f:[0,1]>C. Denote by u the Borel measure associated to the interpolation
scheme. Suppose that ty€|0, 1] satisfies that there exist ¢o>0, 1>2 and an infinite set
N(t)) =N such that

¢o

|B(tn;) — B(10)] >W

for all ne N(ty) and all 0<j<k(n). Then, if {Xu;},>00<j<k(n has regular nodes at t,
we have

In [w,
lim “'W /1n|ﬁz0 (1) du,

(10)

where wy(x) = H]kg)) (X — Xny)-
Proof. Note that, renumbering the elements of N(#) and suppressing the rows of the
interpolating scheme whose index does not belong to N(¢), the problem is reduced
to the case N(#) = N. Hence, we will only focus on this case. Moreover, we define
= f(ty) and f(¢) = In|x — B(2)], t€[0, 1]. We can also assume that f is integrable
and that f(fo) e’ (if it is not, then we can apply Proposition 4.2 and obtain the
desired result).
From (10), it is clear that, for all n > 0 and 0 <j < k(n), 1, is different from ¢,.
Let jo =jo(n) denote the maximum index j for which ¢,;<t#. If #,;>1, for all
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0 <j < nwe define jo = —1. Let ds be the value of ¢ that appears in Definition 2.2.
Now, we select 6 >0 such that the following conditions are met:

1. ¢ is continuous on [ty — 0, t) + 0] N[0, 1];

2. 5<55;

3. f())<0if te(ty — 0,1 + 9] N[0, 1] and is strictly decreasing if 7€ (fy — 0, 2) N[0, 1]
and strictly increasing if 7€ (zg, fo + ) N[0, 1].

Note that item 3 follows from the fact that the map ¢+ |S(z)) — f(¢)| has an isolated
minimum at ¢ = ¢y (we recall that f is a regular parametrisation).
Let us define the functions f, as

Jn() =F (O 210,6-01 () + 1 (O 21105, (1)

Jo—1 q(n)
+ Z f(tn.j)X[t,,J,t,,N)(l) + Z f(tn.j)X(t,,J,l,t,,J](l)v
Jj=p(n) J=lo+2

where p(n) is the minimum index j such that ¢, ;€ [ty — J, to + 0], ¢(n) is the maximum
value of j such that ¢,;€[to —d,% + ], and that the terms f(¢)y,_s(¢) and
SO Xjry40,1)(2) vanish if 7o — <0 and 79 + 0> 1, respectively.

Lemma 4.1. The functions f, satisfy

1. fu is majorised by a u-integrable function F, that is |f,| < F, for alln =0
2. The sequence {f,(t)},s, tends to f(t) for almost all te[0,1], with respect to the
measure .

Proof. Let us start by the case #p ¢ {0, 1}. Note that f(¢) <0 if te[ty — 9, 7 + 0], and
that f(¢) is strictly decreasing if 7y — d <t <ty and strictly increasing if 7y <t<ty + 0.
This implies that |f,,(¢)| < |[f(?)| for all z€]0, 1]. Therefore, as we are assuming that f
is integrable on [0, 1], we can take F(¢) = |f(¢)| and this proves the first item of the
lemma.

To prove the second item, let us define Ts<|[ty — 0,1 + J] as the set of values
telty — 0, t) + o] \{t} for which there exists n,€N such that

(a) for all n > n, there exists j(n) with 1, jo,) <t<tyjom)+1,
(b) lim,, -, o th (n) = =lim,,, tnd(n)+1 =1

It is clear that f,(¢) tends to f(z) if 1€]0, 1]\\[fo — 9, o + J]. We will finish the proof
by showing that {f,(#)},-, tends to f(¢) for te T, and that u(7T5) = u([to — 6,2 +
d]).

So, let us select a fixed value teTys. As t#ty, there exists n; > n, such that
10 & (tnjn), tnjiny+1)- Therefore, if n>n;, we have that j(n)#jo. Now we distinguish
two cases: ]( )<j0 or j(n)>jo. For the first case we have

fn([) =In |x - ﬁ(tny‘(n)” :f(tnl/‘(n))v
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and, for the second one,

fl’l(l) =In |X - ﬁ(lnj(n)+1)| :f(ln,j(n)Jrl)'

As f'is continuous at ¢, we conclude that f,(¢) - f (7).

To see that u(T5) = u([to — 9, to + 9]), let us define A < (#y — J, ty + 0) as the set of
values ¢ for which ¢(¢) is locally constant. Clearly, 4 is an open set and, hence, there
exist disjoint open intervals I,,, me N, such that 4 = J,, I,, and ¢ is constant on each
I,. Then, as pu(l,) = u(l,) =0 (this follows from the continuity of ¢ on
[to — 8,19 + ]), we have that u(lJ,, In) = 0. Let us define the set B as

B= (g — 3,10+ )\ KU {tn,}> U <U I) U{to}] :

mj

As u(B) = pu([to — 0, to + 0]), we will finish the proof by showing that B< T. Hence,
let us select a value e B. We will proceed by steps.

(1) ¢ is strictly increasing at ¢: if it is not, it means that there exists #; #¢ such that
@(t1) = @(t). This implies that the closed interval with endpoints #; and ¢ has zero
measure, so it is contained in one of the I,, defined above. Therefore, t¢ B.

(ii) There exists n, such that, for each n>n,, there is a value j(n) satisfying
by jm) <t<tnjm+1: Note that, for all 7y and #; in [ty — 9, to + J] such that 1, <t <1, we
have that u([#1,1]) and u([t,#;]) are both strictly positive. This implies that both
intervals [¢1,¢] and [t, ;] must contain, from some n = n, on, several values ¢,;.

(i) limy,, oo t,j(n) = lim, -, o 2, (n+1 = & Apply the last paragraph for a sequence
of values ¢| and 1, converging to t.

Finally, note that the proof for the case # {0, 1} can be obtained with minor
modifications of the previous proof. [

Following with the proof of the proposition, we have that:

o fid a(n)
fudi= 3 SCnpiling tayal) + D S eni)eling-ts )
" =) o
Jo—1 1 ‘ q(n) jo—1 iy
= j:zp(;) Wf(tmi) +j:j20;2 mf(ln,/) —i—j;p(;) m]([w)
q(n) i
D T ),
J=jo+2
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that is, the “part” of w, corresponding to [ty — I,y + J]. Therefore,

In | (x)|

D) =51+5 383,

where

and

Now we will study the limit of S, S, and S3 when n tends to infinity. By the
hypotheses of the proposition, |f(t)) — f(tu;)|=co/k(n)" for n=>0 and 0<j<k(n).
Then, as f is negative on [ty — J, %y + 5] N[0, 1], we have that

In ¢y — tInk(n) <f(tn=/‘o)

K S k) S

and
Incy — tlnk(n) <f(fn-jo+l) <0
Koy S k) S
Hence,
lim S; =0.

Using Lemma 4.1 and Lebesgue’s Dominated Convergence Theorem, we obtain

to+0
lim S, = fdu.
n— oo to—5
Next, we define
s»*zjz nys () <j<jo—1 SAA?‘I%Ian,/ 1<) <qln)—1
nj — = k(l’l)7 P SV ) nj — — k(l’ly Jo SYE X
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Now, using Abel’s summation formula, we can write

Jo=l Jo=2
Ay j
> o/ () = ST s (F (1) = f (tng1)) + Snjorf (njo-1),
Jj=p(n) () i=p(n)
q(n) i q(n)—1
Z k{n) f(th) - Z fn’j(f(tn‘jH) _f(l,w)) + §'1J0+1f(ano+2)'
J=iot2 2

Then, using that f is decreasing on [ty — 0, ), increasing on (o, ty + J], and negative
on both intervals, we have

Jo—2
1S51< > Ll (F (tng) = S (tngn)) =+ Isngp 1|1 (o))
Jj=p(n)
q(n)—1
+ > 1Sl (1) = () + Syt I (o) -
Jarwt)

As the nodes ¢, are regular at f, (see Definition 2.2), there exist values b, —0 such
that

n

s | < —— m<j<jpo—1, |s <|<L o+ 1<j<qg(n) — 1
n,j \ln(k(n))a P X/X)o 5 nyj \ln<k(n))7 Jo /X9 .

Therefore, we can bound |S3| as

by
|S3| < WV(ZMJ(")) - 2f(tn,io*l) +f([n.,q(n)) - 2f(tho+2)]

by
< 6y o) = 2 Ink(n)|

Hence,

lim S; =0.

n— oo

With all this we have proved that, if x = (),

()] e
lim T+l ) fdu.

To finish the proof, we will show a similar identity on the set
D; =10, 1]\\[to — 9, tp + J]. Note that we can assume that ¢ is small enough such
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that p(D;s)>0 (this follows from the continuity of ¢ at #)). For each n, let us
define J, as the set of indices j such that f,;eDs (in other words,
Jo={0,....p(n) — 1,q(n) + 1, ..., k(n)}). Then, it is not difficult to check that

. #J,
lim ———— = u(Dy). 11
Jm 1 M) (11)
Let us now consider the subscheme {xu;},-¢,c;, and let ¢ and g be the
corresponding distribution and Borel measure. We note that
! u(l) if I<D,
— 55
fi(l) = { w(Ds) (12)
0 if I<[ty— 8,1t + J).

As ty does not belong to the closure of the subscheme, we can apply Proposition 4.2
to obtain

4 1
fim 3 1) [ ran

Now, taking into account Eq. (11) and (12), we can derive
. f(tn.j) /
lim ———= [ fdu.
"ﬁooj;/; k(”) +1 Ds

This finishes the proof of the proposition. [
4.3. Estimates on measures and dimensions

Let {Xn,},500</<, D€ @ triangular scheme on a piecewise C' curve f: [0,1]-C. In
what follows, ¢>0 and 7>2 will denote real numbers, and ny>1 will be a natural
number. We define the following sets:

D(c,t,mp) = {te[O, 1]/¥n=no, Vi€ {0, ...,n}: |B(t) — ﬁ(th)|>ni;}

and

D= U U U D(c,t,ng).

c>0 1>2 ny=1

Proposition 4.5. The above-defined set D < |0, 1] has Lebesgue measure equal to 1. The
set [0, 1]\\D has Hausdorff dimension equal to 0.
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Proof. As D(c,t,n9)<[0, 1], but the condition used to define this set is stated on
p([0,1]) = C, we need to “translate” it to the parameter space [0, 1]. Hence, we define
the sets

B(c,t,mp) = {te[O, 1]/¥n=n0, Vi€ {0, ... n}: |t — tn,,-|>§}

and

B:U U U B(e,t,np).

c>0 1>2 ny=1

We choose 0 = dy<d| <--- <d;_1<d; =1 such that, for any interval [d,,d,, ], we
have

(a) either Re 4 B(r)#0 or Im 4 B(2) #0 for all te[d,,dy1];
(b) pis C! on [d,,d,11].

We will use a couple of lemmas.
Lemma 4.2. B\{dy, ...,d;} =D.

Proof. We define I, = (d;,d,;1). Given toe B\{dp, ...,d;} there exists an index r
such that 7yel.. We will focus on the case Re% (1)#0 for all tel, (the case
Im% (2)#0 is similar). Then there exist n; =1, ¢;>0 and 7>2 such that, for all
n>=n; and all 0<j<n, we have

[t ] >
n‘L'

As inf,cj, [Re £ B(1)| = ¢2>0 (the parametrisation f is regular), by the mean value
theorem we obtain
Cc1C
[B(0) = B(tnj)| = [Re p(to) — Re fltn))| > calto — tnj| == =

for all #,;€1,. On the other hand, there exists a constant ¢3 >0 such that for all #¢1,,
|B(to) — B(1)|>c3. Then we can select ng such that 22 <c3, for all n>ny. If we define
co = c1¢3, we have

€o

|B(t0) = B(tas)| =2
for all n=ny and 0<j<n. This finishes the proof of the lemma. [

Lemma 4.3. The set [0, 1]\ B has Hausdorff dimension equal to 0. The set B< [0, 1]
has Lebesgue measure equal to 1.
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Proof. Let us define the sets
Insens = {1€10,1)/11 = oyl <,

n
Iy re = l J l Jlnoyr;fw’

nzng j=0

=N ﬂ@

c>0 1>2n

Note that, with these definitions, By = [0, 1]\ B.
We recall [4] that the s-dimensional Hausdorff measure of By, #°(By), is defined
as

H*(Bo) = lim H#'5(Bo),
being

) = inf{z diam(U;)* such that{U;}, is a d-cover of BO}7

where a o-cover is a cover by a finite or countable number of sets of diameter not
bigger than J. The Hausdorff dimension of By, dimy(By), is then defined as

dimy(By) = inf{s=0: #°(F) =0} = sup{s=0: #*(F) = w0 }.

The idea is to show that the Hausdorff measure of By, is zero for all s> 0. This will
prove that the Hausdorff dimension of By is 0.
Let us select se (0, 1). Note that {1,1077,0_,,1,-}”;”0,%]'@ is a cover of By, for all no>1,
7>2 and ¢>0. Now we select a value 5€(0,1). As
2c
diam Ly c.c.n) = pt
if we take ¢ = 6/2 we have that {Zy, c.cnjtysn0<j<n 18 @ 0-cover of By for all ng>1

and 7>2. Hence,
5.3'
H5(Bo) < Z Zdldm Ly renj)’ :Z (n—s—l)ﬁ.
nzny j= nz=ng
Now, selecting T = 3/s (note that t>2) we have
+ 1
#yB)<e 3 "

n=ngy

where M >0 does not depend on ny. This implies that #*(B;) = 0 (in fact, this also
shows that #7§(By) = 0, see [4]) and, hence, that the Hausdorff dimension of By is
zero. In particular, this implies that the Lebesgue measure of By is also zero and,
therefore, that B has total measure on [0,1]. O

The proof of the proposition is now an immediate consequence of these two
lemmas. [
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Remark 4.3. Note that, by Proposition 4.4, if tpe D and the scheme has regular
nodes at f(z) then

llm ln |M/n(ﬁ([0))‘
n— oo n+1

1
- / In B(10) — B(0)| dy.

4.4. Proof of Theorem 3.1

We will proceed item by item.
1. By Proposition 4.1, to have convergence of the polynomial interpolation in a
point xe K it is enough that

1
fim sup 2]
n— o n 1

< V(OC()).

Moreover, by Proposition 4.2, this inequality is true if V' (x) <V (a). It is clear that,
in the case xe K, this convergence is locally uniform.

2. This is an immediate consequence of Propositions 4.1 and 4.2.

3. We select a value y in the relative interior of I'oy in ([0, 1]), and let 4, be a
closed interval such that: (a) 4, is a neighbourhood of y; and (b) A4, is contained in
the relative interior of I'oy. Let us define 7, as

n
L, = U {xed,/|x — xu;|<y(n)},
nzny j=0
where /(n) is a strictly positive function—to be selected later on—that goes to zero
when 7 goes to infinity. Moreover, let us define

I= ) L,

ﬂ()>0
As I, are open and dense sets (with respect to the induced topology in the closed set
A,), and I,,4+1 <1,,, we have that [ is an uncountable dense subset of 4,.
Now, we select xel and we will show that there exists a partial of {P,(x)},

convergent to f(x). From Proposition 4.1, it is enough to show that, for any
xel T, the sequence

L wy(x) Res(f, o)
= wylox)  x— ok

Iy =

has a subsequence convergent to zero. We define positive numbers M, M, and Mj
such that

Res(f', ax)

X — Ok

max
I<k<m

<My, sup |x — x| <M, in£ otk — X | = M3>0.
nj iy

Let jo = jo(n) be such that |x — x,,j,| = ming<j<, |x — x,|. As xel we have that, for
all ny>0, there exist n>ny such that |x — x,,| <y (n). Then:

[l SmM M5 MY [ x — x| < My M2 (n),
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where My = mM M3 and Ms = M, M5. Now, let us select the function ¥ in such a
way that M{y(n) goes to zero when n goes to infinity (for instance, it is enough to
take y(n) = 1/n!). So far, we have proved that for all ng, there exist values n>ny such
that |r,| < MsMZ%y(n). Hence, there exists a subsequence of {r,}, that is convergent
to zero.

Now, as I = 4, = oy, we have that I = I'"°. This implies that " is uncountable,

and that yeI'™"®. This finishes the proof of this item.

out*
4. As the triangular scheme {x;;}(< <, >0 has regular nodes on the set I'oy, we

can apply Propositions 4.4 and 4.5 (see also Remark 4.3) to derive the existence of a
total Lebesgue measure set D<=[0, 1] such that, if xe (D),

1 1

M/O In|x — B(1)| dp.

Finally, as V' (x)> V(a), the divergence (to infinity) of the sequence R,(x) follows.
As the Hausdorff dimension of f~'(I'"®) is zero (see Proposition 4.5), the bi-

out

lim
n—>ow  n—+1

sub

oui 1s also zero

Lipschitz character of f implies that the Hausdorff dimension of I
4. O

4.5. Proof of Theorem 3.2

Itis clear that {Zy;}o< ;<> 18 uniformly distributed with regular nodes. The next
lemma shows an interesting property of this triangular scheme.
Lemma 4.4. Let te(0,1), and let us define the set N’ =N as

N = {neN such that |t,; — t|>%7 vie{l,...,n— 1}}

Then, ifcé% and 123, N, has infinitely many elements.

Proof. For simplicity, we select the values ¢ :% and t = 3 (note that if the result
holds for these values, it then holds for any c<% and 7>=3).
The statement of the lemma follows immediately from the fact that, if n¢ N°, then

n+ 1eN?. Hence, we assume that n¢ N? so there exists a natural number / (0 </ <n)
such that

c
e —t|<—. 13
e = ] <= (13)

Then, for any 0<j<n + 1,

J I
—t= ——| ===t 14
n—+1 ‘ n+1l nl |n H (14)
Moreover,
J 7 [
——|=——=|in—-"¢ |
n+1 n n(n—l—l)bn (n+1)|
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and using that, for all n, / and j such that 0</<n and 0<j<n+1 we have
jn#/(n+ 1), it follows that

j 4 1 c
—_ — 2 2_
n+1 n| nn+1) n?
Now, putting this lower bound in (14) and using (13), we obtain

c c .
if n>=2.

J
e
n+1 ‘ o (n41)?

This shows that n+ 1eN?. [
Remark 4.4. The values for ¢ and 7 used in this lemma are not optimal.

For technical reasons, in the last lemma we have excluded the values j = 0 and # in
the definition of the set N. So, we define

N, = {neN such that |t,; — t|>%7 vje{0, ...,n}}.

Corollary 4.1. N,=N? is an infinite set.

Proof. If meN?\N,, we must have either
c c
lt|<— or |1 —1<—
mt mr

and it is clear that there is only a finite set of values m satisfying this condition.
Therefore, N?\Nt must be finite and then N, must be infinite. [

Remark 4.5. These results are valid, in particular, for any teQn(0,1) =

Un>0 U_;l:_l1 {[rhj}-

Let us now start with the proof of the theorem. As item 1 is a well-known result
(see, for instance, [15]) and item 3 follows from Theorem 3.1 (in this case, oy is
relatively open in [0, 1]), we only focus on the proof of item 2.

From Proposition 4.4 and Corollary 4.1, it follows that, for all e (0, 1),

In |wy,
In lwa (O] /ln|t S| ds.

n—»w
nen, n+1

We define now K = Cp,x- To apply Proposition 4.3, we select V; such that
Cmax < Cy, and f is still defined on a neighbourhood of the closure of Cy,. It turns
out that K is a proper interpolation set with respect to f and Cy,.

Hence, if R,(¢) denotes the interpolating error at ¢, and 1€ I',y, using Proposition
4.1 and that V' (¢)> V' (i), we have

lim R,(f) = 0.

n— oo
nen,
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This is, the sequence of interpolating polynomials { P,(#)}, ., has a subsequence that

diverges to infinity.

neN

Remark 4.6. As a side point, note that, if te @ [0, 1], there exists a subsequence of
{P,(1)},n that converges to the value f(¢). This subsequence can be easily obtained
as follows: if t = ,’,—‘1, then we take the values n that are multiple of m. In this way, the
point ¢ is always contained in the interpolating nodes. This shows that the sequence
{Pu(?)},cn can also have convergent subsequences.
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Appendix A. Technical lemmas

Here we have included some technical lemmas used along the proofs. We keep the
same notation as in the paper, that is, f:[0,1]—C is a piecewise C' curve,
{%njto<i<nn=0=B([0,1]) is a triangular scheme with closure I', distribution ¢, and
associated Borel measure . V' will be the corresponding logarithmic potential (1).

Lemma A.l1. Let V, be a real number, and let A#() be one of the connected
components of {zeC: V(z)<V1}. Then, u(f~(AnT))>0.

Proof. Assume that (' (ANT)) = 0.1f AnT = ( then, as there are no singularities
of (1) inside 4, V is harmonic on A. As V takes the constant value V/; on the
boundary of the bounded set A4, by the maximum principle, }” must take the constant
value V| on A. As the points x € 4 satisfy V(z) <V this forces 4 = @, which is absurd.

Suppose now that AnI'#0. Then, for each xe AnT, there exists a connected
open neighbourhood B(x) of x such that B(x)=A and there exists ¢; and ¢, inside
[0,1] (ty <tp) such that B([t, t2]) = B(x)nT. As u([t;,1;]) =0, (1) can be written as

1 1
V(x):/o ln|x—[3(t)|du+/ In |x — B(1)| dp.

5]

Therefore, V' is harmonic on B(x). This shows that ¥ is harmonic on an open set
containing A NI and, hence, on all 4. As in the previous case, we have that 4 = (),
which is again absurd. Hence, u(f~'(4nT))>0. O
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Lemma A.2. Let Vy be a real number such that I' is contained in a connected
component of Cy, = {zeC: V(z)<Vy}. Then,

(a) the set Cy, is simply connected,
(b) for all Vi > Vy, there exists a piecewise C', closed and simple curve o : [0,1]—C
such that Cy, is contained in the interior of o and Vo<V (a(t))< Vi, Vte|0, 1].

Proof. By Lemma A.l, any connected component of Cy, intersects I'. As I is
contained in one of these connected components, there is a unique connected
component for Cy,. This proves that Cy, is connected. Now, let us pick up a simple
closed curve inside Cy,. As the maximum of V" on the region enclosed by the curve is
attained on the curve, this enclosed region has to be contained in Cy,. This proves
that Cy, is simply connected.

From the Riemann Mapping Theorem [1], there exists a one-to-one analytic
function & : Cy, - C such that #(Cy,) = D, where D denotes the open unit disc of C.
From the definition of the sets Cy, and Cy,, and the continuity of V(z) for z¢ I, we

have that Cy, = Cy,. Then, as h(Cy,) = h(Cy,) =h(Cy,) = D, there exists a circle

o :[0,1]— D enclosing /(Cy,). Therefore, the curve o = h~loa : [0, 1] - Cy, satisfies
item (b). O
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